Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hyperforin prevents β-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-β-deposits

Abstract

The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid β-peptide (Aβ). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Aβ-induced spatial memory impairments and on Aβ neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Aβ-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Aβ oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Aβ aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Salmon DP, Bondi MW . The neuropsychology of Alzheimer's disease. In: Terry RD, Katzman R and Bick KL (eds). Alzheimer's Disease, 2nd edn. Raven Press: New York, 1999, pp 39–56.

    Google Scholar 

  2. Morgan C, Colombres M, Nunez MT, Inestrosa NC . Structure and function of amyloid in Alzheimer's disease. Prog Neurobiol 2004; 74: 323–349.

    Article  CAS  Google Scholar 

  3. Yankner BA . Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 1996; 16: 921–932.

    Article  CAS  Google Scholar 

  4. Mattson MP . Pathways towards and away from Alzheimer's disease. Nature 2004; 430: 631–639.

    Article  CAS  Google Scholar 

  5. Cruz L, Urbanc B, Buldyrev SV, Christie R, Gomez-Isla T, Havlin S et al. Aggregation and disaggregation of senile plaques in Alzheimer disease. Proc Natl Acad Sci USA 1997; 94: 7612–7616.

    Article  CAS  Google Scholar 

  6. Morgan C, Bugueño M, Garrido J, Inestrosa NC . Laminin affects polymerization, depolymerization and neurotoxicity of Aβ peptide. Peptides 2002; 23: 1229–1240.

    Article  CAS  Google Scholar 

  7. Selkoe DJ . Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741–766.

    Article  CAS  Google Scholar 

  8. Bronfman FC, Garrido J, Alvarez A, Morgan C, Inestrosa NC . Laminin inhibits amyloid-β-peptide fibrillation. Neurosci Lett 1996; 218: 201–203.

    Article  CAS  Google Scholar 

  9. Pappolla M, Bozner P, Soto C, Shao H, Robakis NK, Zagorski M et al. Inhibition of Alzheimer β-fibrillogenesis by melatonin. J Biol Chem 1998; 273: 7185–7188.

    Article  CAS  Google Scholar 

  10. Ono K, Hasegawa K, Yoshiike Y, Takashima A, Yamada M, Naiki H . Nordihydroguaiaretic acid potently breaks down pre-formed Alzheimer's β-amyloid fibrils in vitro. J Neurochem 2002; 81: 434–440.

    Article  CAS  Google Scholar 

  11. Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M . Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease. J Neurochem 2003; 87: 172–181.

    Article  CAS  Google Scholar 

  12. Solomon B, Koppel R, Frankel D, Hanan-Aharon E . Disaggregation of Alzheimer β-amyloid by site-directed mAβ. Proc Natl Acad Sci USA 1997; 94: 4109–4112.

    Article  CAS  Google Scholar 

  13. Fraser PE, Nguyen JT, McLachlan DR, Abraham CR, Kirschner DA . 1-antichymotrypsin binding to Alzheimer Aβ peptides is sequence specific and induces fibril disaggregation in vitro. J Neurochem 1993; 61: 298–305.

    Article  CAS  Google Scholar 

  14. Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP et al. Inhibition of amyloid-β-aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA 2002; 99: 12197–12202.

    Article  CAS  Google Scholar 

  15. Kiuchi Y, Isobe Y, Fukushima K . Type IV collagen prevents amyloid β-protein fibril formation. Life Sci 2002; 70: 1555–1564.

    Article  CAS  Google Scholar 

  16. Chacon MA, Barria MI, Soto C, Inestrosa NC . sheet breaker peptide prevents Abeta-induced spatial memory impairments with partial reduction of amyloid deposits. Mol Psychiatry 2004; 9: 953–961.

    Article  CAS  Google Scholar 

  17. Singer A, Wonnemann M, Muller WE . Hyperforin, a major antidepressant constituent of St John's Wort, inhibits serotonin uptake by elevating free intracellular Na+. J Pharmacol Exp Ther 1999; 290: 1363–1368.

    CAS  Google Scholar 

  18. Klusa V, Germane S, Noldner M, Chatterjee SS . Hypericum extract and Hyperforin: memory-enhancing properties in rodents. Pharmacopsychiatry 2001; 34: S61–S69.

    Article  CAS  Google Scholar 

  19. De Ferrari GV, Chacon MA, Barria MI, Garrido JL, Godoy JA, Olivares G et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol Psychiatry 2003; 8: 195–208.

    Article  CAS  Google Scholar 

  20. Morris RGM . Developments of a water maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11: 47–60.

    Article  CAS  Google Scholar 

  21. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates, 2nd edn. Academic Press: New York, 1986.

    Google Scholar 

  22. Côté SL, Ribeiro-Da-Silva A, Cuello AC . Immunocytochemistry II. John Wiley and Sons: New York, NY, 1993.

    Google Scholar 

  23. Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC . Acetylcholinesterase-Aβ complexes are more toxic than Aβ fibrils in rat hippocampus: effect on rat β-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 2004; 164: 2163–2174.

    Article  CAS  Google Scholar 

  24. Puchtler H, Sweat F, LeVine M . On the binding of Congo red by amyloid. J Histochem Cytochem 1961; 10: 355–364.

    Article  Google Scholar 

  25. Elghetany MT, Saleem A . Methods for staining amyloid in tissues: a review. Stain Technol 1988; 63: 201–212.

    Article  CAS  Google Scholar 

  26. Quintanilla RA, Munoz FJ, Metcalfe MJ, Hitschfeld M, Olivares G, Godoy JA et al. Trolox and 17β-estradiol protect against amyloid β-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway. J Biol Chem 2005; 280: 11615–11625.

    Article  CAS  Google Scholar 

  27. Muñoz FJ, Opazo C, Gil-Gómez G, Tapia G, Fernández V, Valverde MA et al. Vitamin E but not 17β-Estradiol protect against vascular toxicity induced by β-amyloid wild-type and the Dutch amyloid variant. J Neurosci 2002; 22: 3081–3089.

    Article  Google Scholar 

  28. Pong K, Doctrow SR, Huffman K, Adinolfi CA, Baudry M . Attenuation of staurosporine-induced apoptosis, oxidative stress, and mitochondrial dysfunction by synthetic superoxide dismutase and catalase mimetics, in cultured cortical neurons. Exp Neurol 2003; 17: 84–97.

    Google Scholar 

  29. LeVine H . Thioflavin T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 1993; 2: 404–410.

    Article  CAS  Google Scholar 

  30. Naiki H, Higuchi K, Nakakuki K, Takeda T . Kinetic analysis of amyloid fibril polymerization in vitro. Lab Invest 1991; 65: 104–110.

    PubMed  CAS  Google Scholar 

  31. Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C et al. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron 1996; 16: 881–891.

    Article  CAS  Google Scholar 

  32. Pike CJ, Cummings BJ, Cotman CW . Early association of reactive astrocytes with senile plaques in Alzheimer's disease. Exp Neurol 1995; 132: 172–179.

    Article  CAS  Google Scholar 

  33. Zhou C, Tabb MM, Sadatrafiei A, Grun F, Sun A, Blumberg B . Hyperforin, the active component of St John's wort, induces IL-8 expression in human intestinal epithelial cells via a MAPK-dependent, NF-kappaB-independent pathway. J Clin Immunol 2004; 24: 623–636.

    Article  CAS  Google Scholar 

  34. McGeer PL, Itagaki S, Tago H, McGeer EG . Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987; 79: 195–200.

    Article  CAS  Google Scholar 

  35. Rozemuller JM, Eikelenboom P, Pals S, Stam FC . Microglialcells around amyloid plaques in Alzheimer's disease express leucocyte adhesion molecules of the LFA-1 family. Neurosci Lett 1989; 101: 282–292.

    Article  Google Scholar 

  36. Hunt EJ, Lester CE, Lester EA, Tackett RL . Effect of St John's Wort on free radical production. Life Sci 2001; 69: 181–190.

    Article  CAS  Google Scholar 

  37. Beckman JS, Koppenol WH . Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996; 271: C1424–C1437.

    Article  CAS  Google Scholar 

  38. Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa NC . Wnt-3a overcomes β-amyloid toxicity in rat hippocampal neurons. Exp Cell Res 2004; 297: 186–196.

    Article  CAS  Google Scholar 

  39. Barger SW, Horster D, Furukawa K, Gogdman Y, Krieglstein J, Mattson MP . Tumor necrosis factors α and β protect neurons against amyloid β-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci USA 1995; 92: 9328–9332.

    Article  CAS  Google Scholar 

  40. Butterfield DA . Amyloid β-peptide [1–42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer's disease brain: mechanisms and consequences. Curr Med Chem 2003; 10: 2651–2659.

    Article  CAS  Google Scholar 

  41. Miranda S, Opazo C, Larrondo LF, Munoz FJ, Ruiz F et al. The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer's disease. Prog Neurobiol 2000; 62: 633–648.

    Article  CAS  Google Scholar 

  42. Hardy J, Selkoe DJ . The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356.

    Article  CAS  Google Scholar 

  43. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Nat Acad Sci 2003; 100: 6370–6375.

    Article  CAS  Google Scholar 

  44. Selkoe DJ . The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol 1998; 8: 447–453.

    Article  CAS  Google Scholar 

  45. Walsh D, Klyubin I, Fadeeva J, Cullen W, Anwyl R, Wolfe M et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416: 53–539.

    Article  Google Scholar 

  46. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat Neurosci 2001; 4: 887–893.

    Article  CAS  Google Scholar 

  47. Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP et al. Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 1999; 924: 133–140.

    Article  Google Scholar 

  48. Harper JD, Wong SS, Lieber CM, Lansbury Jr PT . Assembly of Aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer's disease. Biochemistry 1999; 38: 8972–8980.

    Article  CAS  Google Scholar 

  49. Nielsen EH, Nybo M, Svehag SE . Electron microscopy of prefibrillar structures and amyloid fibrils. Methods Enzymol 1999; 309: 491–496.

    Article  CAS  Google Scholar 

  50. Cummings BJ, Su JH, Cotman CW . Neuritic involvement within bFGF immunopositive plaques of Alzheimer's disease. Exp Neurol 1993; 124: 315–325.

    Article  CAS  Google Scholar 

  51. Satoskar RR, Shah SJ, Shenoy SG . Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol 1986; 24: 651–654.

    PubMed  CAS  Google Scholar 

  52. Fujisawa S, Atsumi T, Ishihara M, Kadoma Y . Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res 2004; 24: 563–569.

    PubMed  CAS  Google Scholar 

  53. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS et al. Curcumin inhibits formation of amyloid-β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280: 5892–5901.

    Article  CAS  Google Scholar 

  54. van Dongen M, van Rossum E, Kessels A, Sielhorst H, Knipschild P . Ginkgo for elderly people with dementia and age-associated memory impairment: a randomized clinical trial. J Clin Epidemiol 2003; 56: 367–376.

    Article  Google Scholar 

  55. Stackman RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, Quinn JF . Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment. Exp Neurol 2003; 184: 510–520.

    Article  Google Scholar 

  56. Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005; 25: 8807–8814.

    Article  CAS  Google Scholar 

  57. Marambaud P, Zhao H, Davies P . Resveratrol promotes clearance of Alzheimer's disease amyloid-β peptides. J Biol Chem 2005; 280: 37377–37382.

    Article  CAS  Google Scholar 

  58. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 2003; 39: 409–421.

    Article  CAS  Google Scholar 

  59. Behl C, Davis JB, Lesley R, Schubert D . Hydrogen peroxide mediates amyloid-β-protein toxicity. Cell 1994; 77: 817–827.

    Article  CAS  Google Scholar 

  60. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB . Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 1997; 272: 22364–22372.

    Article  CAS  Google Scholar 

  61. Cui Y, Gurley B, Ang C, Leakey J . Determination of hyperforin in human plasma using solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. J Chromatogr B 2002; 780: 129–135.

    Article  CAS  Google Scholar 

  62. Kiewert C, Buchholzer ML, Hartmann J, Chatterjee SS, Klein J . Stimulation of hippocampal acetylcholine release by hyperforin, a constituent of St John's Wort. Neurosci Lett 2004; 364: 195–198.

    Article  CAS  Google Scholar 

  63. Froestl B, Steiner B, Muller WE . Enhancement of proteolytic processing of the β-amyloid precursor protein by hyperforin. Biochem Pharmacol 2003; 66: 2177–2184.

    Article  CAS  Google Scholar 

  64. Cott JM, Rosenthal N, Blumenthal M . St John's wort and major depression. J Am Med Assoc 2001; 286: 42–45.

    Article  CAS  Google Scholar 

  65. Xu Y, Ku BS, Yao HY, Lin YH, Ma X et al. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 2005; 82: 200–206.

    Article  CAS  Google Scholar 

  66. Butterweck V . Mechanism of action of St John's wort in depression: what is known? CNS Drugs 2003; 17: 539–562.

    Article  CAS  Google Scholar 

  67. Rojas P, Rojas C, Ebadi M, Montes S, Monroy-Noyola A, Serrano-Garcia N . EGb761 pretreatment reduces monoamine oxidase activity in mouse corpus striatum during 1-methyl-4-phenylpyridinium neurotoxicity. Neurochem Res 2004; 29: 1417–1423.

    Article  CAS  Google Scholar 

  68. Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GA . Ginkgolides, diterpene trilactones of Ginkgo biloba, as antagonists at recombinant α1β2γ2L GABAA receptors. Eur J Pharmacol 2004; 494: 131–138.

    Article  CAS  Google Scholar 

  69. Albert D, Zundorf I, Dingermann T, Muller WE, Steinhilber D, Werz O . Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem Pharmacol 2002; 64: 1767–1775.

    Article  CAS  Google Scholar 

  70. Smith JV, Luo Y . Elevation of oxidative free radicals in Alzheimer's disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimers Dis 2003; 5: 287–300.

    Article  Google Scholar 

  71. Feisst C, Werz O . Suppression of receptor-mediated Ca2+ mobilization and functional leukocyte responses by hyperforin. Biochem Pharmacol 2004; 67: 1531–1539.

    Article  CAS  Google Scholar 

  72. Yao ZX, Han Z, Drieu K, Papadopoulos V . Ginkgo biloba extract (Egb 761) inhibits β-amyloid production by lowering free cholesterol levels. J Nutr Biochem 2004; 15: 749–756.

    Article  CAS  Google Scholar 

  73. Bastianetto S, Ramassamy C, Dore S, Christen Y, Poirier J, Quirion R . The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur J Neurosci 2000; 12: 1882–1890.

    Article  CAS  Google Scholar 

  74. Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ et al. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA 2002; 99: 12197–12202.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Joselyn Mauna and Rocio Artigas for their help with the glial and microglial studies. This research was supported by grants from FONDAP (No 13980001) and the Millennium Institute for Fundamental and Basic Biology (MIFAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N C Inestrosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinamarca, M., Cerpa, W., Garrido, J. et al. Hyperforin prevents β-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-β-deposits. Mol Psychiatry 11, 1032–1048 (2006). https://doi.org/10.1038/sj.mp.4001866

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001866

Keywords

This article is cited by

Search

Quick links