Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Expanding the role of NHERF, a PDZ-domain containing protein adapter, to growth regulation

Abstract

NHERF (Na+/H+ exchanger regulatory factor or NHERF-1) and E3KARP (NHE3 kinase A regulatory protein or NHERF-2) are structurally related protein adapters that are highly expressed in epithelial tissues. NHERF proteins contain two tandem PDZ domains and a C-terminal sequence that binds several members of the ERM (ezrin-radixin-moesin) family of membrane-cytoskeletal adapters. Although identified as a regulator of NHE3, recent evidence points to a broadening role for NHERF in the function, localization and/or turnover of G-protein coupled receptors, platelet-derived growth factor receptor and ion transporters such as CFTR, Na/Pi cotransporter, Na/HCO3 cotransporter and Trp (calcium) channels. NHERF also recruits non-membrane proteins such as the c-Yes/YAP-65 complex, members of the phospholipase Cβ family and the GRK6A protein kinase to apical surface of polarized epithelial cells where they regulate or respond to membrane signals. While two distinct models have been proposed for NHERF's role in signal transduction, the common theme is NHERF's ability to bring together membrane and non-membrane proteins to regulate cell metabolism and growth. NHERF overexpression in human breast cancers and mutations in NHERF targets, such as CFTR and merlin, the product of Neurofibromatosis NF2 tumor suppressor gene, that impair NHERF binding suggest that aberrant NHERF function contributes to human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ahn S, Maudsley S, Luttrell LM, Lefkowitz RJ, Daaka Y . 1999 J. Biol. Chem. 274: 1185–1188

  • Ahn W, Kim KH, Lee JA, Kim JY, Choi JY, Moe OW, Milgram SL, Muallem S, Lee MG . 2001 J. Biol. Chem. 276: 17236–17243

  • Barber DL, Ganz MB . 1992 J. Biol. Chem. 267: 20607–20612

  • Bretscher A . 1999 Curr. Opin. Cell Biol. 11: 109–116

  • Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M . 1999 Nature 401: 286–290

  • Dransfield DT, Bradford AJ, Smith J, Martin M, Roy C, Mangeat PH, Goldenring JR . 1997 EMBO J. 16: 35–43

  • Ediger TR, Kraus WL, Weinman EJ, Katzenellenbogen BS . 1999 Endocrinology 140: 2976–2982

  • Fouassier L, Yun CC, Fitz JG, Doctor RB . 2000 J. Biol. Chem. 275: 25039–25045

  • Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ, Lefkowitz RJ . 1998a Proc. Natl. Acad. Sci. USA 95: 8496–8501

  • Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ . 1998b Nature 392: 626–630

  • Hall RA, Spurney RF, Premont RT, Rahman N, Blitzer JT, Pitcher JA, Lefkowitz RJ . 1999 J. Biol. Chem. 274: 24328–24334

  • Hu MC, Fan L, Crowder LA, Karin-Jimenez Z, Murer H, Moe OW . 2001 J. Biol. Chem. 276: 26906–26915

  • Hwang JI, Heo K, Shin KJ, Kim E, Yun C, Ryu SH, Shin HS, Suh PG . 2000 J. Biol. Chem. 275: 16632–16637

  • Jay DG, Sakurai T . 1999 Biochim Biophys Acta 1424: 39–48

  • Kalikin LM, Frank TS, #Svoboda-Newman SM, Wetzel JC, Cooney KA, Petty EM . 1997 Oncogene 14: 1991–1994

  • Kalikin LM, Qu X, Frank TS, Caduff RF, Svoboda SM, Law DJ, Petty EM . 1996 Genes Chromosomes Cancer 17: 64–68

  • Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, Noel J . 2000 J. Cell Sci. 113: 3649–3662

  • Lamb RF, Ozanne BW, Roy C, McGarry L, Stipp C, Mangeat P, Jay DG . 1997 Curr. Biol. 7: 682–688

  • Lamprecht G, Weinman EJ, Yun CH . 1998 J. Biol. Chem. 273: 29972–29978

  • Maudsley S, Zamah AM, Rahman N, Blitzer JT, Luttrell LM, Lefkowitz RJ, Hall RA . 2000 Mol. Cell. Biol. 20: 8352–836

  • Mohler PJ, Kreda SM, Boucher RC, Sudol M, Stutts MJ, Milgram SL . 1999 J. Cell Biol. 147: 879–890

  • Moyer BD, Duhaime M, Shaw C, Denton J, Reynolds D, Karlson KH, Pfeiffer J, Wang S, Mickle JE, Milewski M, Cutting GR, Guggino WB, Li M, Stanton BA . 2000 J. Cell Biol. 275: 27069–27074

  • Murthy A, Gonzalez-Agosti C, Cordero E, Pinney D, Candia C, Solomon F, Gusella J, Ramesh V . 1998 J. Biol. Chem. 273: 1273–1276

  • Nguyen R, Reczek D, Bretscher A . 2001 J. Biol. Chem. 276: 7621–7629

  • Raghuram V, Mak DD, Foskett JK . 2001 Proc. Natl. Acad. Sci. USA 98: 1300–1305

  • Reczek D, Berryman M, Bretscher A . 1997 J. Cell Biol. 139: 169–179

  • Shao ZM, Nguyen M, Barsky SH . 2000 Oncogene 38: 4337–4345

  • Shenolikar S, Minkoff CM, Steplock DA, Evangelista C, Liu M, Weinman EJ . 2001 FEBS Lett. 489: 233–236

  • Shimizu K, Nagamachi Y, Tani M, Kimura K, Shiroishi T, Wakana S, Yokota J . 2000 Genomics 65: 113–120

  • Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL . 1998 J. Biol. Chem. 273: 19797–19801

  • Stemmer-Rachamimov AO, Wiederhold T, Nielsen GP, James M, Pinney-Michalowski D, Roy JE, Cohen WA, Ramesh V, Louis DN . 2001 Am. J. Pathol. 158: 57–62

  • Stokowski RP, Cox DR . 2000 Am. J. Hum. Genet. 66: 873–891

  • Sun F, Hug MJ, Bradbury NA, Frizzell RA . 2000a J. Biol. Chem. 275: 14360–14366

  • Sun F, Hug MJ, Lewarchik CM, Yun CH, Bradbury NA, Frizzell RA . 2000b J. Biol. Chem. 275: 29539–29546

  • Szaszi K, Kurashima K, Kapus A, Paulsen A, Kaibuchi K, Grinstein S, Orlowski J . 2000 J. Biol. Chem. 275: 28599–28606

  • Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, Zhu MX . 2000 J. Biol. Chem. 275: 37559–37564

  • Tokunou M, Niki T, Saitoh Y, Imamura H, Sakamoto M, Hirohashi S . 2000 Lab. Invest. 80: 1643–1650

  • Tran Quang C, Gautreau A, Arpin M, Treisman R . 2000 EMBO J. 19: 4565–4576

  • Wade JB, Welling PA, Donowitz M, Shenolikar S, Weinman EJ . 2001 Am. J. Physiol. (Cell Physiol.) 280: 192–198

  • Wang S, Raab RW, Schatz PJ, Guggino WB, Li M . 1998 FEBS Lett. 427: 103–108

  • Weinman EJ, Steplock D, Donowitz M, Shenolikar S . 2000 Biochemistry 39: 6123–6129

  • Weinman EJ, Steplock D, Shenolikar S . 1993 J. Clin. Invest. 92: 1781–1786

  • Weinman EJ, Steplock D, Wang Y, Shenolikar S . 1995 J. Clin. Invest. 95: 2143–2149

  • Weinman EJ, Steplock D, Zhang X, Akhter S, Shenolikar S . 1999 Biochim. Biophys. Acta 1447: 71–76

Download references

Acknowledgements

Studies on NHERF in the Weinman and Shenolikar laboratories are supported by grants from NIH DK55881 (to EJ Weinman and S Shenolikar) and Veterans Administration (to EJ Weinman). JW Voltz is supported by a predoctoral fellowship from the Department of Defense Breast Cancer Program (DAMD-17-98-1-8070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirish Shenolikar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voltz, J., Weinman, E. & Shenolikar, S. Expanding the role of NHERF, a PDZ-domain containing protein adapter, to growth regulation. Oncogene 20, 6309–6314 (2001). https://doi.org/10.1038/sj.onc.1204774

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204774

Keywords

This article is cited by

Search

Quick links