Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Histone deacetylase inhibitor apicidin downregulates DNA methyltransferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells

Abstract

Dysregulation of DNA methyltransferase (DNMT)1 expression is associated with cellular transformation, and inhibition of DNMT1 exerts antitumorigenic effects. Here, we report that DNMT1 abnormally expressed in HeLa cells is downregulated by a histone deacetylase (HDAC) inhibitor apicidin, which is correlated with induction of repressive histone modifications on the promoter site. Apicidin selectively represses the expression of DNMT1 among DNMTs in HeLa cells, independent of cell cycle arrest at G0/G1. Furthermore, apicidin causes a significant reduction in the recruitment of RNA polymerase II into the promoter. Chromatin immunoprecipitation analysis shows that even though apicidin causes global hyperacetylation of histone H3 and H4, localized deacetylation of histone H3 and H4 occurs at the E2F binding site, which is accompanied by the recruitment of pRB and the replacement of P/CAF with HDAC1 into the sites. In addition, K4-trimethylated H3 on nucleosomes associated with the transcriptional start site is depleted following apicidin treatment, whereas repressive markers, K9- and K27-trimethylation of H3 are enriched on the site. The downregulation of DNMT1 expression seems to require de novo protein synthesis, because the apicidin effect is antagonized by cycloheximide treatment. Moreover, knock down of DNMT1 with siRNA induces the apoptosis of HeLa cells, indicating that downregulation of DNMT1 might be a good strategy for therapeutics of human cervix cancer. Collectively, our findings will provide a mechanistic rationale for the use of HDAC inhibitors in cancer therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ChIP:

chromatin immunoprecipitation

DNMT:

DNA methyltransferase

HAT:

histone acetyltransferase

HDAC:

histone deacetylase

Pol II:

RNA polymerase II

References

  • Bakin AV, Curran T . (1999). Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283: 387–390.

    Article  CAS  Google Scholar 

  • Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG . (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10: 687–692.

    Article  CAS  Google Scholar 

  • Baylin SB, Herman JG . (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16: 168–174.

    Article  CAS  Google Scholar 

  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP . (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72: 141–196.

    Article  CAS  Google Scholar 

  • Beaulieu N, Morin S, Chute IC, Robert MF, Nguyen H, MacLeod AR . (2002). An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem 277: 28176–28181.

    Article  CAS  Google Scholar 

  • Bestor T, Laudano A, Mattaliano R, Ingram V . (1988). Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203: 971–983.

    Article  CAS  Google Scholar 

  • Bigey P, Ramchandani S, Theberge J, Araujo FD, Szyf M . (2000). Transcriptional regulation of the human DNA Methyltransferase (dnmt1) gene. Gene 242: 407–418.

    Article  CAS  Google Scholar 

  • Boyes J, Bird A . (1991). DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64: 1123–1134.

    Article  CAS  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T . (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601.

    Article  CAS  Google Scholar 

  • Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF . (1997). Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277: 1996–2000.

    Article  CAS  Google Scholar 

  • Cress WD, Seto E . (2000). Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184: 1–16.

    Article  CAS  Google Scholar 

  • Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC . (2005). Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45: 495–528.

    Article  CAS  Google Scholar 

  • Eden S, Cedar H . (1994). Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev 4: 255–259.

    Article  CAS  Google Scholar 

  • Ferguson M, Henry PA, Currie RA . (2003). Histone deacetylase inhibition is associated with transcriptional repression of the Hmga2 gene. Nucleic Acids Res 31: 3123–3133.

    Article  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD . (2003). Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475–479.

    Article  CAS  Google Scholar 

  • Fournel M, Sapieha P, Beaulieu N, Besterman JM, MacLeod AR . (1999). Down-regulation of human DNA-(cytosine-5) methyltransferase induces cell cycle regulators p16(ink4A) and p21(WAF/Cip1) by distinct mechanisms. J Biol Chem 274: 24250–24256.

    Article  CAS  Google Scholar 

  • Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H et al. (2003). Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2: 971–984.

    CAS  Google Scholar 

  • Goodwin EC, DiMaio D . (2000). Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 97: 12513–12518.

    Article  CAS  Google Scholar 

  • Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M et al. (2006). Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66: 6361–6369.

    Article  CAS  Google Scholar 

  • Gui CY, Ngo L, Xu WS, Richon VM, Marks PA . (2004). Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 101: 1241–1246.

    Article  CAS  Google Scholar 

  • Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J . (2003). Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63: 664–673.

    CAS  Google Scholar 

  • Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW et al. (2000). Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 60: 6068–6074.

    CAS  Google Scholar 

  • Hermann A, Gowher H, Jeltsch A . (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61: 2571–2587.

    Article  CAS  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    Article  CAS  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    Article  CAS  Google Scholar 

  • Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS et al. (2000). Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem 275: 20436–20443.

    Article  CAS  Google Scholar 

  • Kim YK, Lee EK, Kang JK, Kim JA, You JS, Park JH et al. (2006). Activation of NF-kappaB by HDAC inhibitor apicidin through Sp1-dependent de novo protein synthesis: its implication for resistance to apoptosis. Cell Death Differ 13: 2033–2041.

    Article  CAS  Google Scholar 

  • Kimura H, Nakamura T, Ogawa T, Tanaka S, Shiota K . (2003). Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res 31: 3101–3113.

    Article  CAS  Google Scholar 

  • Kouzarides T . (2007). Chromatin modifications and their function. Cell 128: 693–705.

    Article  CAS  Google Scholar 

  • Kwon SH, Ahn SH, Kim YK, Bae GU, Yoon JW, Hong S et al. (2002). Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 277: 2073–2080.

    Article  CAS  Google Scholar 

  • Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E et al. (1995). Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81: 197–205.

    Article  CAS  Google Scholar 

  • Lee BH, Yegnasubramanian S, Lin X, Nelson WG . (2005). Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 280: 40749–40756.

    Article  CAS  Google Scholar 

  • Leonhardt H, Page AW, Weier HU, Bestor TH . (1992). A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71: 865–873.

    Article  CAS  Google Scholar 

  • Li B, Carey M, Workman JL . (2007). The role of chromatin during transcription. Cell 128: 707–719.

    Article  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R . (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.

    Article  CAS  Google Scholar 

  • Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M . (2006). A profile of Methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res 66: 8342–8346.

    Article  CAS  Google Scholar 

  • Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP et al. (1998). Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–605.

    Article  CAS  Google Scholar 

  • Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . (2001). Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1: 194–202.

    Article  CAS  Google Scholar 

  • Marsit CJ, Houseman EA, Christensen BC, Eddy K, Bueno R, Sugarbaker DJ et al. (2006). Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors. Cancer Res 66: 10621–10629.

    Article  CAS  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T . (2000). Regulation of E2F1 activity by acetylation. EMBO J 19: 662–671.

    Article  CAS  Google Scholar 

  • McCabe MT, Davis JN, Day ML . (2005). Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res 65: 3624–3632.

    Article  CAS  Google Scholar 

  • McCabe MT, Low JA, Daignault S, Imperiale MJ, Wojno KJ, Day ML . (2006a). Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res 66: 385–392.

    Article  CAS  Google Scholar 

  • McCabe MT, Low JA, Imperiale MJ, Day ML . (2006b). Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway. Oncogene 25: 2727–2735.

    Article  CAS  Google Scholar 

  • Milutinovic S, Knox JD, Szyf M . (2000). DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21(WAF1/CIP1/sdi1). J Biol Chem 275: 6353–6359.

    Article  CAS  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al. (2004). Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101: 540–545.

    Article  CAS  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    CAS  Google Scholar 

  • Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J et al. (2003). Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 63: 5126–5135.

    CAS  Google Scholar 

  • Okano M, Xie S, Li E . (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19: 219–220.

    Article  CAS  Google Scholar 

  • Park JS, Lee KR, Kim JC, Lim SH, Seo JA, Lee YW . (1999). A hemorrhagic factor (Apicidin) produced by toxic Fusarium isolates from soybean seeds. Appl Environ Microbiol 65: 126–130.

    CAS  Google Scholar 

  • Pradhan S, Bacolla A, Wells RD, Roberts RJ . (1999). Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 274: 33002–33010.

    Article  CAS  Google Scholar 

  • Rao S, Lowe M, Herliczek TW, Keyomarsi K . (1998). Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene 17: 2393–2402.

    Article  CAS  Google Scholar 

  • Reik W, Dean W, Walter J . (2001). Epigenetic reprogramming in mammalian development. Science 293: 1089–1093.

    Article  CAS  Google Scholar 

  • Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A et al. (2003). DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33: 61–65.

    Article  CAS  Google Scholar 

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA et al. (1999). The human DNA methyltransferases (DNMTs)1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27: 2291–2298.

    Article  CAS  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB . (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25: 269–277.

    Article  CAS  Google Scholar 

  • Scott GK, Marden C, Xu F, Kirk L, Benz CC . (2002). Transcriptional repression of ErbB2 by histone deacetylase inhibitors detected by a genomically integrated ErbB2 promoter-reporting cell screen. Mol Cancer Ther 1: 385–392.

    CAS  Google Scholar 

  • Szyf M, Bozovic V, Tanigawa G . (1991). Growth regulation of mouse DNA methyltransferase gene expression. J Biol Chem 266: 10027–10030.

    CAS  Google Scholar 

  • Walsh CP, Bestor TH . (1999). Cytosine methylation and mammalian development. Genes Dev 13: 26–34.

    Article  CAS  Google Scholar 

  • Watt F, Molloy PL . (1988). Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2: 1136–1143.

    Article  CAS  Google Scholar 

  • Wu J, Issa JP, Herman J, Bassett Jr DE, Nelkin BD, Baylin SB . (1993). Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci USA 90: 8891–8895.

    Article  CAS  Google Scholar 

  • Xiong Y, Dowdy SC, Podratz KC, Jin F, Attewell JR, Eberhardt NL et al. (2005). Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells. Cancer Res 65: 2684–2689.

    Article  CAS  Google Scholar 

  • Yan PS, Shi H, Rahmatpanah F, Hsiau TH, Hsiau AH, Leu YW et al. (2003). Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res 63: 6178–6186.

    CAS  Google Scholar 

  • Zhang Y, Reinberg D . (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343–2360.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (R01-2006-000-10707-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-W Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, J., Kang, J., Lee, E. et al. Histone deacetylase inhibitor apicidin downregulates DNA methyltransferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene 27, 1376–1386 (2008). https://doi.org/10.1038/sj.onc.1210776

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210776

Keywords

This article is cited by

Search

Quick links