Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Sulfation through the looking glass—recent advances in sulfotransferase research for the curious

Abstract

Members of the cytosolic sulfotransferase (SULT) superfamily catalyse the sulfation of a multitude of xenobiotics, hormones and neurotransmitters. Humans have at least 10 functional SULT genes, and a number of recent advances reviewed here have furthered our understanding of SULT function. Analysis of expression patterns has shown that sulfotransferases are highly expressed in the fetus, and SULTs may in fact be a major detoxification enzyme system in the developing human. The X-ray crystal structures of three SULTs have been solved and combined with mutagenesis experiments and molecular modelling, they have provided the first clues as to the factors that govern the unique substrate specificities of some of these enzymes. In the future these and other studies will facilitate prediction of the fate of chemicals metabolised by sulfation. Variation in sulfation capacity may be important in determining an individual's response to xenobiotics, and there has been an explosion in information on sulfotransferase polymorphisms and their functional consequences, including the influence of SULT1A1 genotype on susceptibility to colorectal and breast cancer. Finally, the first gene knockout experiments with SULTs have recently been described, with the generation of estrogen sulfotransferase deficient mice in which reproductive capacity is compromised. Our improved understanding of these enzymes will have significant benefits in such diverse areas as drug design and development, cancer susceptibility, reproduction and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Box 1
Box 2
Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. Raftogianis RB et al, submitted for publication. In particular, the new nomenclature for the SULT1C enzymes may cause some confusion. The human SULT1C2 referred to here was called SULT1C1 or SULT1C sulfotransferase 1 in the original descriptions,18,19,75 and the human SULT1C4 referred to here was originally called SULT1C2 or SULT1C sulfotransferase.19,75

  2. This may not be the case for liver, where the presence of other SULT isoforms such as 1B1 may interfere with measurement of enzyme activity with non-selective substrates such as 4-nitrophenol (our unpublished work).

Abbreviations

SULT:

Sulfotransferase

PAPS:

3′-phosphoadenosine 5′-phosphosulfate

References

  1. Robbins PW, Lipmann F . Isolation and identification of active sulfate J Biol Chem 1957 229: 837–851

    Article  CAS  PubMed  Google Scholar 

  2. Klaassen CD, Boles JW . The importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation FASEB J 1997 11: 404–418

    Article  CAS  PubMed  Google Scholar 

  3. Dousa MK, Tyce GM . Free and conjugated plasma catecholamines, DOPA and 3-O-methyldopa in humans and various animal species Proc Soc Exp Biol Med 1988 188: 427–434

    Article  CAS  PubMed  Google Scholar 

  4. Eisenhofer G, Coughtrie MWH, Goldstein DS . Dopamine sulphate: an enigma resolved Clin Exp Pharmacol Physiol 1999 26: S41-S53

    Google Scholar 

  5. Ogura K, Kajita J, Narihata H, Watabe T, Ozawa S, Nagata K et al . Cloning and sequence analysis of a rat liver cDNA encoding hydroxysteroid sulfotranferase Bio chem Biophys Res Commun 1989 165: 168–174

    Article  CAS  Google Scholar 

  6. Ogura K, Kajita J, Narihata H, Watabe T, Ozawa S, Nagata K et al . cDNA cloning of the hydroxysteroid sulfotransferase STa sharing a strong homology in amino acid sequence with the senescence mark er protein SMP-2 in rat livers Biochem Biophys Res Commun 1990 166: 1494–1500

    Article  CAS  PubMed  Google Scholar 

  7. Watabe T, Ogura K, Satsukawa M, Okuda H, Hiratsuka A . Molecular cloning and functions of rat liver hydroxysteroid sulfotransferases catalysing covalent binding of carcinogenic polycyclic arylmethanols to DNA Chem Biol Interact 1994 92: 87–105

    Article  CAS  PubMed  Google Scholar 

  8. Otterness DM, Wieben ED, Wood TC, Watson RWG, Madden BJ, McCormick DJ et al . Human liver dehydroepiandrosterone sulfotransferase: molecular cloning and expression of cDNA Mol Pharmacol 1992 41: 865–872

    CAS  PubMed  Google Scholar 

  9. Barker EV, Hume R, Hallas A, Coughtrie MWH . Dehydroepiandrosterone sulfotransferase in the developing human fetus—quantitative biochemical and immunological characterization of the hepatic, renal, and adrenal enzymes Endocrinology 1994 134: 982–989

    Article  CAS  PubMed  Google Scholar 

  10. Hume R, Barker EV, Coughtrie MWH . Differential expression and immunohistochemical localization of the phenol and hydroxysteroid sulfotransferase enzyme families in the developing lung Histochem Cell Biol 1996 105: 147–152

    Article  CAS  PubMed  Google Scholar 

  11. Hume R, Coughtrie MWH . Phenolsulfotransferase—localization in kidney during human embryonic and fetal development Histochem J 1994 26: 850–855

    Article  CAS  PubMed  Google Scholar 

  12. Richard K, Hume R, Kaptein E, Stanley EL, Visser TJ, Coughtrie MWH . Sulfation of thyroid hormone and dopamine during human development—ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung and brain J Clin Endocrinol Metab 2001 86: 2734–2742

    CAS  PubMed  Google Scholar 

  13. Stanley EL . Expression and function of iodothyronine metabolising enzymes during human placental and fetal development PhD Thesis University of Dundee 2001

  14. Hakkola J, Pelkonen O, Pasanen M, Raunio H . Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity Crit Rev Toxicol 1998 28: 35–72

    Article  CAS  PubMed  Google Scholar 

  15. Coughtrie MWH, Burchell B, Leakey JEA, Hume R . The inadequacy of perinatal glucuronidation—immunoblot analysis of the developmental expression of individual UDP-glucuronosyltransferase isoenzymes in rat and human-liver microsomes Mol Pharmacol 1988 34: 729–735

    CAS  PubMed  Google Scholar 

  16. Varin L, Marsolais F, Richard M, Rouleau M . Biochemistry and molecular biology of plant sulfotransferases FASEB J 1997 11: 517–525

    Article  CAS  PubMed  Google Scholar 

  17. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB . Sulfotransferase molecular biology: cDNAs and genes FASEB J 1997 11: 3–14

    Article  CAS  PubMed  Google Scholar 

  18. Her C, Kaur GP, Athwal RS, Weinshilboum RM . Human sulfotransferase SULT1C1: cDNA cloning, tissue-specific expression and chromosomal localization Genomics 1997 41: 467–470

    Article  CAS  PubMed  Google Scholar 

  19. Sakakibara Y, Yanagishita M, Katafuchi J, Ringer DP, Takami Y, Nakayama T et al . Molecular cloning, expression, and characterization of novel human SULT1C sulfotransferases that catalyze sulfonation of N-hydroxy-2-acetylaminofluorene J Biol Chem 1998 273: 33929–33935

    Article  CAS  PubMed  Google Scholar 

  20. Parker CR, Falany CN, Stockard CR, Stankovic AK, Grizzle WE . Immunohistochemical localization of dehydroepiandrosterone sulfotransferase in human fetal tissues J Clin Endocrinol Metab 1994 78: 234–236

    CAS  PubMed  Google Scholar 

  21. Song WC, Melner MH . Editorial: steroid transformation enzymes as critical regulators of steroid action in vivo Endocrinology 2000 141: 1587–1589

    Article  CAS  PubMed  Google Scholar 

  22. Buirchell BJ, Hähnel R . Metabolism of estradiol-17b in human endometrium during the menstrual cycle J Steroid Biochem 1975 6: 1489–1494

    Article  CAS  PubMed  Google Scholar 

  23. Rubin GL, Harrold AJ, Mills JA, Falany CN, Coughtrie MWH . Regulation of sulfotransferase expression in the endometrium during the menstrual cycle, by oral contraceptives and during early pregnancy Mol Human Reprod 1999 5: 995–1002

    Article  CAS  Google Scholar 

  24. Tseng L, Liu HC . Stimulation of arylsulfotransferase activity by progestins in human endometrium in vitro J Clin Endocrinol Metab 1981 53: 418–421

    Article  CAS  PubMed  Google Scholar 

  25. Falany JL, Falany CN . Regulation of estrogen sulfotransferase in human endometrial adenocarcinoma cells by progesterone Endocrinology 1996 137: 1395–1401

    Article  CAS  PubMed  Google Scholar 

  26. Kester MHA, Bulduk S, Tibboel D, Meinl W, Glatt H, Falany CN et al . Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs Endocrinology 2000 141: 1897–1900

    Article  CAS  PubMed  Google Scholar 

  27. Safe SH . Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment Crit Rev Toxicol 1994 24: 87–149

    Article  CAS  PubMed  Google Scholar 

  28. Falany CN, Xie XW, Wang J, Ferrer J, Falany JL . Molecular cloning and expression of novel sulphotransferase-like cDNAs from human and rat brain Biochem J 2000 346: 857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hume R, Coughtrie MWH, Burchell B . Differential localization of UDP-glucuronosyltransferase in kidney during human embryonic and fetal development Arch Toxicol 1995 69: 242–247

    Article  CAS  PubMed  Google Scholar 

  30. Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC . Crystal structure of estrogen sulphotransferase Nature Struct Biol 1997 4: 904–908

    Article  CAS  PubMed  Google Scholar 

  31. Dajani R, Cleasby A, Neu M, Wonacott AJ, Jhoti H, Hood AM et al . X-ray crystal structure of human dopamine sulfotransferase, SULT1A3: molecular modelling and QSAR analysis demonstrate a molecular basis for sulfotransferase substrate specificity J Biol Chem 1999 274: 37862–37868

    Article  CAS  PubMed  Google Scholar 

  32. Bidwell LM, McManus ME, Gaedigk A, Kakuta Y, Negishi M, Pedersen L et al . Crystal structure of human catecholamine sulfotransferase J Mol Biol 1999 293: 521–530

    Article  CAS  PubMed  Google Scholar 

  33. Pedersen LC, Petrotchenko EV, Negishi M . Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase FEBS Lett 2000 475: 61–64

    Article  CAS  PubMed  Google Scholar 

  34. Kakuta Y, Sueyoshi T, Negishi M, Pedersen LC . Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/N-sulfotransferase 1 J Biol Chem 1999 274: 10673–10676

    Article  CAS  PubMed  Google Scholar 

  35. Pakhomova S, Kobayashi M, Buck J, Newcomer ME . A helical lid converts a sulfotransferase to a dehydratase Nat Struct Biol 2001 8: 447–451

    Article  CAS  PubMed  Google Scholar 

  36. Yoshinari K, Petrotchenko EV, Pedersen LC, Negishi M . Crystal structure-based studies of cytosolic sulfotransferase J Biochem Molec Toxicol 2001 15: 67–75

    Article  CAS  Google Scholar 

  37. Kakuta Y, Petrotchenko EV, Pedersen LC, Negishi M . The sulfuryl transfer mechanism: crystal structure of a vanadate complex of estrogen sulfotransferase and mutational analysis J Biol Chem 1998 273: 27325–27330

    Article  CAS  PubMed  Google Scholar 

  38. Dajani R, Hood AM, Coughtrie MWH . A single amino acid, Glu146, governs the substrate specificity of a human dopamine sulfotransferase, SULT1A3 Mol Pharmacol 1998 54: 942–948

    Article  CAS  PubMed  Google Scholar 

  39. Brix LA, Barnett AC, Duggleby RG, Leggett B, McManus ME . Analysis of the substrate specificity of human sulfotransferases SULT1A1 and SULT1A3: site-directed mutagenesis and kinetic studies Biochemistry 1999 38: 10474–10479

    Article  CAS  PubMed  Google Scholar 

  40. Brix LA, Duggleby RG, Gaedigk A, McManus ME . Structural characterization of human aryl sulphotransferases Biochem J 1999 337: 337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Petrotchenko EV, Doerflein ME, Kakuta Y, Pedersen LC, Negishi M . Substrate gating confers steroid specificity to estrogen sulfotransferase J Biol Chem 1999 274: 30019–30022

    Article  CAS  PubMed  Google Scholar 

  42. Weinshilboum R . Phenol sulfotransferase inheritance Cell Mol Neurobiol 1988 8: 27–33

    Article  CAS  PubMed  Google Scholar 

  43. Weinshilboum R . Sulfotransferase pharmacogenetics Pharmac Ther 1990 45: 93–107

    Article  CAS  Google Scholar 

  44. Weinshilboum R, Aksoy I . Sulfation pharmacogenetics in humans Chem Biol Interact 1994 92: 233–246

    Article  CAS  PubMed  Google Scholar 

  45. Glatt H, Engelke CEH, Pabel U, Teubner W, Jones AL, Coughtrie MWH et al . Sulfotransferases: genetics and role in toxicology Toxicol Lett 2000 112: 341–348

    Article  PubMed  Google Scholar 

  46. Price RA, Spielman RS, Lucena AL, van Loon JA, Baidak BL, Weinshilboum RM . Genetic polymorphism for human platelet thermostable phenol sulfotransferase (TS PST) activity Genetics 1989 122: 905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reiter C, Weinshilboum R . Platelet phenol sulfotransferase activity: correlation with sulfate conjugation of acetaminophen Clin Pharmacol Ther 1982 32: 612–621

    Article  CAS  PubMed  Google Scholar 

  48. Bonham-Carter SM, Rein G, Glover V, Sandler M, Caldwell J . Human platelet phenol sulphotransferase M and P: substrate specificities and correlation with in vivo sulphoconjugation of paracetamol and salicylamide Br J Clin Pharmacol 1983 15: 323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Loon JA, Weinshilboum RM . Human platelet phenol sulfotransferase: familial variation in thermal stability of the TS form Biochem Genet 1984 22: 997–1014

    Article  CAS  PubMed  Google Scholar 

  50. Jones AL, Roberts RC, Coughtrie MWH . The human phenolsulfotransferase polymorphism is determined by the level of expression of the enzyme protein Biochem J 1993 296: 287–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stanley EL, Hume R, Visser TJ, Coughtrie MWH . Differential expression of sulfotransferase enzymes involved in thyroid hormone metabolism during human placental development J Clin Endocrinol Metab 2001 86: 5944–5955

    Article  CAS  PubMed  Google Scholar 

  52. Raftogianis RB, Wood TC, Otterness DM, van Loon JA, Weinshilboum RM . Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype Biochem Biophys Res Commun 1997 239: 298–304

    Article  CAS  PubMed  Google Scholar 

  53. Raftogianis RB, Wood TC, Weinshilboum RM . Human phenol sulfotransferases SULT1A2 and SULT1A1. Genetic polymorphisms, allozyme properties, and human liver genotype–phenotype correlations Biochem Pharmacol 1999 58: 605–616

    Article  CAS  PubMed  Google Scholar 

  54. Nowell S, Ambrosone CB, Ozawa S, MacLeod SL, Mrackova G, Williams S et al . Relationship of phenol sulfotransferase activity (SULT1A1) genotype to sulfotransferase phenotype in platelet cytosol Pharmacogenetics 2000 10: 789–797

    Article  CAS  PubMed  Google Scholar 

  55. Ozawa S, Shimizu M, Katoh T, Miyajima A, Ohno Y, Matsumoto Y et al . Sulfating-activity and stability of cDNA-expressed allozymes of human phenol sulfotransferase, ST1A3*1 (213Arg) and ST1A3*2 (213His), both of which exist in Japanese as well as Caucasians J Biochem 1999 126: 271–277

    Article  CAS  PubMed  Google Scholar 

  56. Li X, Clemens DL, Cole JR, Anderson RJ . Characterization of human liver thermostable phenol sulfotransferase (SULT1A1) allozymes with 3,3′,5′-triiodothyronine as the substrate J Endocrinol 2001 171: 525–532

    Article  CAS  PubMed  Google Scholar 

  57. Raftogianis RB . Human sulfotransferases and cellular response to estrogens and antiestrogens Drug Metab Rev 2001 33: 10

    Google Scholar 

  58. Petrotchenko EV, Pedersen LC, Borchers CH, Tomer KB, Negishi M . The dimerization motif of cytosolic sulfotransferases FEBS Lett 2001 490: 39–43

    Article  CAS  PubMed  Google Scholar 

  59. Kester MHA, Kaptein E, Roest TJ, van Dijk CH, Tibboel D, Meinl W et al . Characterization of human iodothyronine sulfotransferases J Clin Endocrinol Metab 1999 84: 1357–1364

    CAS  PubMed  Google Scholar 

  60. Coughtrie MWH, Gilissen RAHJ, Shek B, Strange RC, Fryer AA, Jones PW et al . Phenol sulphotransferase SULT1A1 polymorphism: molecular diagnosis and allele frequencies in Caucasian and African populations Biochem J 1999 337: 45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frame LT, Gatlin TL, Kadlubar FF, Lang NP . Metabolic differences and their impact on human disease—Sulfotransferase and colorectal cancer Environ Toxicol Pharmacol 1997 4: 277–281

    Article  CAS  PubMed  Google Scholar 

  62. Bamber DE, Fryer AA, Strange RC, Elder JB, Deakin M, Rajagopal R et al . Phenol sulphotransferase SULT1A1*1 genotype is associated with reduced risk of colorectal cancer Pharmacogenetics 2001 11: 679–685

    Article  CAS  PubMed  Google Scholar 

  63. Seth P, Lunetta KL, Bell DW, Gray H, Nasser SM, Rhei E et al . Phenol sulfotransferases: hormonal regulation, polymorphism, and age of onset of breast cancer Cancer Res 2000 60: 6859–6863

    CAS  PubMed  Google Scholar 

  64. Zheng W, Xie DW, Cerhan JR, Sellers TA, Wen WQ, Folsom AR . Sulfotransferase 1A1 polymorphism, endogenous estrogen exposure, well-done meat intake, and breast cancer risk Cancer Epidem Biomar 2001 10: 89–94

    Google Scholar 

  65. Chou HC, Lang NP, Kadlubar FF . Metabolic activation of the N-hydroxy derivative of the carcinogen 4-aminobiphenyl by human tissue sulfotransferases Carcinogenesis 1995 16: 413–417

    Article  CAS  PubMed  Google Scholar 

  66. Steiner M, Bastian M, Schulz WA, Pulte T, Franke KH, Rohring A et al . Phenol sulphotransferase SULT1A1 polymorphism in prostate cancer: lack of association Arch Toxicol 2000 74: 222–225

    Article  CAS  PubMed  Google Scholar 

  67. Kalow W, Bertilsson L . Interethnic factors affecting drug response Advanc Drug Res 1994 23: 1–53

    Google Scholar 

  68. Nebert DW, Menon AG . Pharmacogenomics, ethnicity, and susceptibility genes Pharmacogenomics J 2001 1: 19–22

    Article  CAS  PubMed  Google Scholar 

  69. Zhu X, Veronese ME, Iocco P, McManus ME . cDNA cloning and expression of a new form of human aryl sulfotransferase Int J Biochem Cell Biol 1996 28: 565–571

    Article  CAS  PubMed  Google Scholar 

  70. Engelke CEH, Meinl W, Boeing H, Glatt H . Association between functional genetic polymorphisms of human sulfotransferases 1A1 and 1A2 Pharmacogenetics 2000 10: 163–169

    Article  CAS  PubMed  Google Scholar 

  71. Dooley TP, Haldeman-Cahill R, Joiner J, Wilborn TW . Expression profiling of human sulfotransferase and sulfatase gene superfamilies in epithelial tissues and cultured cells Biochem Biophys Res Commun 2000 277: 236–245

    Article  CAS  PubMed  Google Scholar 

  72. Carlini EJ, Raftogianis RB, Wood TC, Jin F, Zheng W, Rebbeck TR et al . Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African–American subjects Pharmacogenetics 2001 11: 57–68

    Article  CAS  PubMed  Google Scholar 

  73. Iida A, Sekine A, Saito S, Kitamura Y, Kitamoto T, Osawa S et al . Catalog of 320 single nucleotide polymorphisms (SNPs) in 20 quinone oxidoreductase and sulfotransferase genes J Hum Genet 2001 46: 225–240

    Article  CAS  PubMed  Google Scholar 

  74. Freimuth RR, Eckloff B, Wieben ED, Weinshilboum RM . Human sulfotransferase SULT1C1 pharmacogenetics: gene resequencing and functional genomic studies Pharmacogenetics 2001 11: 747–756

    Article  CAS  PubMed  Google Scholar 

  75. Freimuth RR, Raftogianis RB, Wood TC, Moon E, Kim UJ, Xu J et al . Human sulfotransferases SULT1C1 and SULT1C2: cDNA characterization, gene cloning, and chromosomal localization Genomics 2000 65: 157–165

    Article  CAS  PubMed  Google Scholar 

  76. Yoshinari K, Nagata K, Shimada M, Yamazoe Y . Molecular characterization of ST1C1-related human sulfotransferase Carcinogenesis 1998 19: 951–953

    Article  CAS  PubMed  Google Scholar 

  77. Li XY, Clemens DL, Anderson RJ . Sulfation of iodothyronines by human sulfotransferase 1C1 (SULT1C1) Biochem Pharmacol 2000 60: 1713–1716

    Article  CAS  PubMed  Google Scholar 

  78. Song W-C, Qian YM, Li AP . Estrogen sulfotransferase expression in the human liver: marked interindividual variation and lack of gender specificity J Pharmacol Exp Ther 1998 284: 1197–1202

    CAS  PubMed  Google Scholar 

  79. Rotter JI, Wong FL, Lifrak ET, Parker LN . A genetic component to the variation of dehydroepiandrosterone sulfate Metabolism 1985 34: 731–736

    Article  CAS  PubMed  Google Scholar 

  80. Aksoy IA, Sochorová V, Weinshilboum RM . Human liver dehydroepiandrosterone sulfotransferase—nature and extent of individual variation Clin Pharmacol Ther 1993 54: 498–506

    Article  CAS  PubMed  Google Scholar 

  81. Wood TC, Her C, Aksoy I, Otterness DM, Weinshilboum RM . Human dehydroepiandrosterone sulfotransferase pharmacogenetics: quantitative western analysis and gene sequence polymorphisms J Steroid Biochem Mol Biol 1996 59: 467–478

    Article  CAS  PubMed  Google Scholar 

  82. Nagata K, Yamazoe Y . Pharmacogenetics of sulfotransferase Annu Rev Pharmacol Toxicol 2000 40: 159–176

    Article  CAS  PubMed  Google Scholar 

  83. Thomae BA, Eckloff BW, Freimuth RR, Wieben ED, Weinshilboum RM . Human sulfotransferase SULT2A1 pharmacogenetics: genotype-to-phenotype studies Pharmacogenomics J 2002 2: 48–56

    Article  CAS  PubMed  Google Scholar 

  84. Ingelman-Sundberg M . Implications of polymorphic cytochrome P450-dependent drug metabolism for drug development Drug Metab Dispos 2001 29: 570–573

    CAS  PubMed  Google Scholar 

  85. Hodgson J . ADMET—turning chemicals into drugs Nat Biotechnol 2001 19: 722–726

    Article  CAS  PubMed  Google Scholar 

  86. Funk C, Ponelle C, Scheuermann G, Pantze M . Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: In vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat Mol Pharmacol 2001 59: 627–635

    Article  CAS  PubMed  Google Scholar 

  87. Keppler D, Kamisako T, Leier I, Cui Y, Nies AT, Tsujii H et al . Localization, substrate specificity, and drug resistance conferred by conjugate export pumps of the MRP family Adv Enzyme Regul 2000 40: 339–349

    Article  CAS  PubMed  Google Scholar 

  88. Suzuki H, Sugiyama Y . Transport of drugs across the hepatic sinusoidal membrane: sinusoidal drug influx and efflux in the liver Semin Liver Dis 2000 20: 251–263

    Article  CAS  PubMed  Google Scholar 

  89. Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ . Hepatic transport of bile salts Semin Liver Dis 2000 20: 273–292

    Article  CAS  PubMed  Google Scholar 

  90. Qian YM, Sun XJ, Tong MH, Li XP, Richa J, Song WC . Targeted disruption of the mouse estrogen sulfotransferase gene reveals a role of estrogen metabolism in intracrine and paracrine estrogen regulation Endocrinology 2001 142: 5342–5350

    Article  CAS  PubMed  Google Scholar 

  91. Song W-C, Qian Y, Sun X, Negishi M . Cellular localization and regulation of expression of testicular estrogen sulfotransferase Endocrinology 1997 138: 5006–5012

    Article  CAS  PubMed  Google Scholar 

  92. Borthwick EB, Burchell A, Coughtrie MWH . Differential expression of hepatic estrogen, phenol and dehydroepiandrosterone sulfotransferases in genetically-obese diabetic (ob/ob) male and female mice J Endocrinol 1995 144: 31–37

    Article  CAS  PubMed  Google Scholar 

  93. Meloche CA, Falany CN . Expression of SULT2B1b in hormonally regulated human tissues Drug Metab Rev 2001 33: 230

    Google Scholar 

  94. Geese WJ, Raftogianis RB . Biochemical characterization and tissue distribution of human SULT2B1 Biochem Biophys Res Commun 2001 288: 280–289

    Article  CAS  PubMed  Google Scholar 

  95. Javitt NB, Lee YC, Shimizu C, Fuda H, Strott CA . Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression Endocrinology 2001 142: 2978–2984

    Article  CAS  PubMed  Google Scholar 

  96. Ozawa S, Tang Y-M, Yamazoe Y, Kato R, Lang NP, Kadlubar FF . Genetic polymorphism in human liver phenol sulfotransferases involved in the bioactivation of N-hydroxy derivatives of carcinogenic arylamines and heterocyclic amines Chem Biol Interact 1998 109: 237–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to all the members of my laboratory (past and present), and to numerous valued collaborators, who have contributed to the work and ideas described here. I am particularly indebted to Dr Rebecca Raftogianis (Fox Chase Cancer Center, Philadelphia, USA) for her critical reading of the manuscript and for helpful suggestions regarding nomenclature, and to Professor Jyrki Taskinen (University of Helsinki, Finland) for producing the model upon which Figure 2 is based. Current research in the laboratory is supported by the Medical Research Council, the Commission of the European Communities (QLG3-CT-2000-00930), Tenovus Scotland, the Scottish Office Chief Scientist Office and the Human Drug Conjugation Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MWH Coughtrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coughtrie, M. Sulfation through the looking glass—recent advances in sulfotransferase research for the curious. Pharmacogenomics J 2, 297–308 (2002). https://doi.org/10.1038/sj.tpj.6500117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500117

Keywords

Search

Quick links