Skip to main content
Log in

Ion channels and transporters involved in cell volume regulation and sensor mechanisms

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

All animal cell types have an appropriate volume. Even under physiological conditions of constant extracellular osmolarity, cells must regulate their volume. Cell volume is subjected to alterations because of persistent physicochemical osmotic load resulting from Donnan-type colloid osmotic pressure and of cell activity-associated changes in intracellular osmolarity resulting from osmolyte transport and metabolism. The strategy adopted by animal cells for coping with volume regulation on osmotic perturbation is to activate transport pathways, including channels and transporters, mainly for inorganic osmolytes to drive water flow. Under normotonic conditions, cells undergo volume regulation by pump-mediated mechanisms. Under anisotonic conditions, volume regulation occurs by additional channel/transporter-mediated mechanisms. Cell volume regulation is also attained through adjustment of intracellular levels not only of inorganic but also of organic osmolytes with changing the expression of their transporters or regulation of metabolism. In cell volume regulation mechanism, several “volume sensors” are thought to be involved. A volume-sensitive Cl channel has lately attracted considerable attention in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Macknight, A. D. C. and Leaf, A. (1977) Regulation of cellular volume. Physiol. Rev. 57, 510–573.

    PubMed  CAS  Google Scholar 

  2. Hoffmann, E. K. and Simonsen, L. O. (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69, 315–382.

    PubMed  CAS  Google Scholar 

  3. Lang, F., Busch, G. L., Ritter, M., Völkl, H., Waldegger, S., Gulbins, E., et al. (1998) Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306.

    PubMed  CAS  Google Scholar 

  4. Hoffmann, E. K. and Mills, J. W. (1999) Membrane events involved in volume regulation. Curr. Top. Membt. 48, 123–196.

    CAS  Google Scholar 

  5. Lang, F. (ed.) (1998) Cell Volume Regulation, Karger, Basel.

    Google Scholar 

  6. Okada, Y. ed. (1998) Cell Volume Regulation, The Molecular Mechanism, and Volume Sensing Machinery, Elsevier, Amsterdam.

    Google Scholar 

  7. O'Neill, W. C. (1999) Physiological significance of volume-regulatory transporters. Am. J. Physiol. 276, C995-C1011.

    PubMed  Google Scholar 

  8. Wehner, F., Olsen, H., Tinel, H., Kinne-Saffran, E., and Kinne, R. K. H. (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev. Physiol. Biochem. Pharmacol. 148, 1–80.

    PubMed  CAS  Google Scholar 

  9. Baumgarten, C. M., and Feher, J. J. (1998) Osmosis and the regulation of cell volume, in Cell Physiology Source Book, 2nd ed. (Sperelakis, N., ed.), San Diego, Academic Press, pp. 253–292.

    Google Scholar 

  10. Okada, Y. (1997) Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273, C755-C789.

    PubMed  CAS  Google Scholar 

  11. Fettiplace, R. and Haydon, D. A. (1980) Water permeability of lipid membranes. Physiol. Rev. 60, 510–550.

    PubMed  CAS  Google Scholar 

  12. Diamond, J. M. (1978) Solute-linked water transport in epithelia, in Membrane Transport ProcessesV Vol. 1 (Hoffman, J. F., ed.), Raven Press, New York, pp. 257–292.

    Google Scholar 

  13. Zeuthen, T. (1996) Molecular Mechanisms of Water Transport, Springer, New York.

    Google Scholar 

  14. Agre, P., Preston, G. M., Smith, B. L., Jung, J.-S., Raina, S., Moon, C., et al. (1993) Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265, F463-F476.

    PubMed  CAS  Google Scholar 

  15. Verkman, A. S., van Hoek, A. N., Ma, T., Frigeri, A., Skach, W. R., Mitra, A., et al. (1996) Water transport across mammalian cell membranes. Am. J. Physiol. 270, C12-C30.

    PubMed  CAS  Google Scholar 

  16. Yang, B., and Verkman, A. S. (1997) Water and glycerol permeability of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J. Biol. Chem. 272, 16140–16146.

    PubMed  CAS  Google Scholar 

  17. Maffly, R. H. and Leaf, A. (1959) The potential of water in mammalian tissues J. Gen. Physiol. 42, 1257–1275.

    PubMed  CAS  Google Scholar 

  18. Lucké, B., and McCutcheon, M. (1932) The living cell as an osmotic system and its permeability to water. Physiol. Rev. 12, 68–139.

    Google Scholar 

  19. Drewnowska, K. and Baumgarten, C. M. (1991) Regulation of cellular volume in rabbit ventricular myocytes: bumetanide, chlorothiazide, and ouabain. Am. J. Physiol. 260, C122-C131.

    PubMed  CAS  Google Scholar 

  20. Morishima, S., Shimizu, T., Kida, H., and Okada, Y. (2000) Volume expansion sensitivity of swelling-activated Cl channel in human epithelial cells. Jpn. J. Physiol. 50, 277–280.

    PubMed  CAS  Google Scholar 

  21. Hazama, A. and Okada, Y. (1988) Ca2+ sensitivity of volume-regulatory K+ and Cl channels in cultured human epithelial cells. J. Physiol. (Lond.) 402, 687–702.

    CAS  Google Scholar 

  22. Leaf, A. (1956) On the mechanism of fluid exchange of tissues in vitro. Biochemistry 62, 241–248.

    CAS  Google Scholar 

  23. Tosteson, D. C. and Hoffman, J. F. (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44, 169–194.

    PubMed  CAS  Google Scholar 

  24. Parker J. C., Gitelman, H. J., Glosson, P. S., and Leonard, D. L. (1975) Role of calcium in volume regulation by dog red blood cells. J. Gen. Physiol. 65, 84–96.

    PubMed  CAS  Google Scholar 

  25. Milanick, M. A. and Hoffman, J. F. (1986) Ion transport and volume regulation in red blood cells. Ann. N. Y. Acad. Sci. 488, 174–186.

    PubMed  CAS  Google Scholar 

  26. Grinstein, S. and Foskett, J. K. (1990) Ionic mechanisms of cell volume regulation in leukocytes. Annu. Rev. Physiol. 52, 399–414.

    PubMed  CAS  Google Scholar 

  27. Sarkadi, B., and Parker, J. C. (1991) Activation of ion transport pathways in volume regulatory response of human lymphocytes to hyposmotic media. Am. J. Physiol. 248, C480-C487.

    Google Scholar 

  28. Miley, H. E., Holden, D., Grint, R., Best, L., and Brown, P. D. (1998) Regulatory volume increase in rat pancreatic β-cells. Pflügers Arch. 435, 227–230.

    PubMed  CAS  Google Scholar 

  29. Pedersen, S. F., Kramhøft, B., Jørgensen, N. K. and Hoffmann E. K. (1996) Shrinkage-induced activation of the Na+/H+ exchanger in Ehrlich ascites tumor cells: mechanisms involved in the activation and a role for the exchanger in cell volume regulation. J. Membr. Biol. 149, 141–159.

    PubMed  CAS  Google Scholar 

  30. Wehner, F. (1998) Cell volume-regulated cation channels. In Cell Volume Regulation (Lang, F. (ed.), Karger, Basel, pp. 8–20.

    Google Scholar 

  31. Wehner, F. and Tinel, H. (1998) Role of Na+ conductance, Na+−H+ exchange, and Na+−K+−2Cl symport in the regulatory volume increase of rat hepatocytes. J. Physiol. (Lond.) 506, 127–142.

    CAS  Google Scholar 

  32. Haas, M. (1994) The Na−K−Cl cotransporters. Am. J. Physiol. 267, C869-C885.

    PubMed  CAS  Google Scholar 

  33. Hoffmann, E. K. and Dunham, P. B. (1995) Membrane mechanisms and intracellular signalling in cell volume regulation. Intern. Rev. Cytol. 161, 173–262.

    CAS  Google Scholar 

  34. Su, G., Kintner, D. B., Flagella, M., Shull, G. E., and Sun, D. (2002) Astrocytes from Na+−K+−Cl cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am. J. Physiol. 282, C1147-C1160.

    CAS  Google Scholar 

  35. Lytle, C. (1997) Activation of the avian erythrocyte Na−K−Cl cotransport protein by shrinkage, cAMP, fluoride and calyculin-A involves phosphorylation at common sites. J. Biol. Chem. 272, 15069–15077.

    PubMed  CAS  Google Scholar 

  36. Xu, J.-C., Lytle, C., Zhu, T. T., Payne, J. A., Benz, E., Jr., and Forbush, B. (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na−K−Cl cotransporter. Proc. Natl. Acad. Sci. U. S. A. 91, 2201–2205.

    PubMed  CAS  Google Scholar 

  37. Jensen, B. S., Jessen, F., and Hoffmann, E. K. (1993) Na+, K+, Cl cotransport and its regulation in Ehrlich ascites tumor cells. Ca2+/calmodulin and protein kinase C dependent pathways. J. Membr. Biol. 131, 161–178.

    PubMed  CAS  Google Scholar 

  38. Klein, J. D., Lamitina, S. T., and O'Neill, W. C. (1999) JNK is a volume-sensitive kinase that phosphorylates the Na−K−2Cl cotransporter in vitro. Am. J. Physiol. 277, C425-C431.

    PubMed  CAS  Google Scholar 

  39. Haas, M. and Forbush, B., 3rd. (2000) The Na−K−Cl cotransporter of secretory epithelia. Annu. Rev. Physiol. 62, 515–534.

    PubMed  CAS  Google Scholar 

  40. Klein, J. D. and O'Neill, W. C. (1995) Volumesensitive myosin phosphorylation in vascular endothelial cells: correlation with Na−K−2Cl cotransport. Am. J. Physiol. 269, C1524-C1531.

    PubMed  CAS  Google Scholar 

  41. Krarup, T., Jakobsen, L. D., Jensen, B. S., and Hoffmann, E. K. (1998) Na+−K+−2Cl cotransport in Ehrlich cells: regulation by protein phosphatases and kinases. Am. J. Physiol. 275, C239-C250.

    PubMed  CAS  Google Scholar 

  42. Di Ciano-Oliveira, C., Sirokmany, G., Szaszi, K., Arthur, W. T., Masszi, A., Peterson, M., et al. (2003) Hyperosmotic stress activates Rho: differential involvement in Rho kinase-dependent MLC phosphorylation and NKCC activation. Am. J. Physiol. 285, C555-C566.

    Google Scholar 

  43. Russell, J. M. (2000) Sodium-potassium-chloride cotransport. Physiol. Rev. 80, 211–276.

    PubMed  CAS  Google Scholar 

  44. Kapus, A., Grinstein, S., Wasan, S., Kandasamy, R., and Orlowski, J. (1994) Functional characterization of three isoforms of he Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. J. Biol. Chem. 269, 23544–23552.

    PubMed  CAS  Google Scholar 

  45. Bookstein, C., Musch, M. W., DePaoli, A., Xie, Y., Villereal, M., Rao, M. C., et al. (1994) A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J. Biol. Chem. 269, 29704–29709.

    PubMed  CAS  Google Scholar 

  46. Attaphitaya, S., Nehrke, K., and Melvin, J. E. (2001) Acute inhibition of the brain-specific Na+/H+ exchanger isoform 5 by protein kinases A and C and cell shrinkage. Am. J. Physiol. 281, C1146-C1157.

    CAS  Google Scholar 

  47. Fliegel, L. and Fröhlich, O. (1993) The Na+/H+ exchange: an update on structure, regulation and cardiac physiology. Biochem. J. 296, 273–285.

    PubMed  CAS  Google Scholar 

  48. Shrode, L. D., Klein, J. D., O'Neill, W. C., and Putnam, R. W. (1995) Shrinkage-induced activation of Na+/H+ exchange in primary rat astrocytes: role of myosin light-chain kinase. Am. J. Physiol. 269, C257-C266.

    PubMed  CAS  Google Scholar 

  49. Grinstein, S., Woodside, M., Sardet, C., Pouyssegur, J., and Rotin, D. (1992) Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism. J. Biol. Chem. 267, 23823–23828.

    PubMed  CAS  Google Scholar 

  50. Bianchini, L., Kapus, A., Lukacs, G., Wasan, S., Wakabayashi, S., Pouyssegur, J., et al. (1995) Responsiveness of mutants of NHE1 isoform of Na+/H+ antiport to osmotic stress. Am. J. Physiol. 269, C998-C1007.

    PubMed  CAS  Google Scholar 

  51. Krump, E., Nikitas, K., and Grinstein, S. (1997) Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J. Biol. Chem. 272, 17303–17311.

    PubMed  CAS  Google Scholar 

  52. Grinstein, S., Goetz-Smith J. D., Stewart, D., Beresford, B. J., and Mellors, A. (1986) Protein phosphorylation during activation of Na+/H+ exchange by phorbol esters and by osmotic shrinking. Possible relation to cell pH and volume regulation. J. Biol. Chem. 261, 8009–8016.

    PubMed  CAS  Google Scholar 

  53. Pedersen, S. F., Kramhoft, B., Jorgensen, N. K., and Hoffmann, E. K. (1996) Shrinkage-induced activation of the Na+/H+ exchanger in Ehrlich ascites tumor cells: mechanisms involved in the activation and a role for the exchanger in cell volume regulation. J. Membr. Biol. 149, 141–159.

    PubMed  CAS  Google Scholar 

  54. Bertrand, B., Wakabayashi, S., Ikeda, T., Pouyssegur, J., and Shigekawa, M. (1994) The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J. Biol. Chem. 269, 13703–13709.

    PubMed  CAS  Google Scholar 

  55. Roger, F., Martin, P.-Y., Rousselot, M., Favre, H., and Féraille, E. (1999) Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle's loop. J. Biol. Chem. 274, 34103–34110.

    PubMed  CAS  Google Scholar 

  56. Bustamante, M., Roger, F., Bochaton-Piallat, M.-L., Gabbiani, G., Martin, P.-Y., and Feraille, E. (2003) Regulatory volume increase is associated with p38 kinase-dependent actin cytoskeleton remodeling in rat kidney MTAL. Am. J. Physiol. 285, F336-F347.

    CAS  Google Scholar 

  57. Bildin, V. N., Wang, Z., Iserovich, P., and Reinach, P. S. (2003) Hypertonicity-induced p38MAPK activation elicits recovery of corneal epithelial cell volume and layer integrity. J. Membr. Biol. 193, 1–13.

    PubMed  CAS  Google Scholar 

  58. Fisher, R. S., Persson, B.-E., and Spring, K. R. (1981) Epithelial cell volume regulation: bicarbonate dependence. Science 214, 1357–1359.

    PubMed  CAS  Google Scholar 

  59. Jiang, L., Chernova, M. N., and Alper, S. L. (1997) Secondary regulatory volume increase conferred on Xenopus oocytes by expression of AE2 anion exchanger. Am. J. Physiol. 272, C191-C202.

    PubMed  CAS  Google Scholar 

  60. Humphreys, B. D., Jiang, L., Chernova, M. N., and Alper, S. L. (1995) Hypertonic activation of AE2 anion exchanger in Xenopus oocytes via NHE-mediated intracellular alkalinization. Am. J. Physiol. 268, C201-C209.

    PubMed  CAS  Google Scholar 

  61. Hoffmann, E. K. (1978) Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells, in Osmotic and Volume Regulation (Jorgensen, C. B. and Skadhauge E., eds.), Alfred Benzon Symposium XI., Munksgaard, Copenhangen, pp. 397–417.

    Google Scholar 

  62. Okada, Y., and Hazama, A. (1989) Volume-regulatory ion channels in human epithelial cells. News Physiol. Sci. 4, 238–242.

    Google Scholar 

  63. Okada, Y., Hazama, A., and Yuan, W.-L. (1990) Stretch-induced activation of Ca2+-permeable ion channels is involved in the volume regulation of hypotonically swollen epithelial cells. Neurosci. Res. 12, S5-S13.

    CAS  Google Scholar 

  64. Chan, H. C. and Nelson, D. J. (1992) Chloride-dependent cation conductance activated during cellular shrinkage. Science 257, 669–671.

    PubMed  CAS  Google Scholar 

  65. Korbmacher, C., Volk, T., Segal, A. S., Boulpaep, E. L., and Frömter, E. (1995) A calcium-activated and nucleotide-sensitive nonselective cation channel in M-1 mouse cortical collecting duct cells. J. Membr. Biol. 146, 29–45.

    PubMed  CAS  Google Scholar 

  66. Volk, T., Frömter, E., and Korbmacher, C. (1995) Hypertonicity activates nonselective cation channels in mouse cortical collecting duct cells. Proc. Natl. Acad. Sci. U. S. A. 92, 8478–8492.

    PubMed  CAS  Google Scholar 

  67. Nelson, D. J., Tien, X.-Y., Xie, W., Brasitus, T. A., Kaetzel, M. A., and Dedman, J. R. (1996) Shrinkage activates a nonselective conductance: involvment of a Walker-motif protein and PKC. Am. J. Physiol. 270, C179-C191.

    PubMed  CAS  Google Scholar 

  68. Koch, J.-P. and Korbmacher, C. (1999) Osmotic shrinkage activates nonselective cation (NSC) channels in various cell types. J. Membr. Biol. 168, 131–139.

    PubMed  CAS  Google Scholar 

  69. Shen, M.-R., Yang, T.-P., and Tang, M.-J. (2002) A novel function of BCL-2 overexpression in regulatory volume decrease. Enhancing swelling-activated Ca2+ entry and Cl channel activity. J. Biol. Chem. 277, 15592–15599.

    PubMed  CAS  Google Scholar 

  70. Wehner, F., Shimizu, T., Sabirov, R., and Okada, Y. (2003) Hypertonic activation of a non-selective cation conductance in HeLa cells and its contribution to cell volume regulation. FEBS Lett. 551, 20–24.

    PubMed  CAS  Google Scholar 

  71. Wehner, F., Sauer, H., and Kinne, R. K. (1995) Hypertonic stress increases the Na+ conductance of rat hepatocytes in primary culture. J. Gen. Physiol. 105, 507–535.

    PubMed  CAS  Google Scholar 

  72. Civan, M. M., Coca-Prados, M., and Peterson-Yantorno, K. (1996) Regulatory volume increase of human non-pigmented ciliary epithelial cells. Exp. Eye Res. 62, 627–640.

    PubMed  CAS  Google Scholar 

  73. Böhmer, C. and Wehner, F. (2001) The epithelial Na+ channel (ENaC) is related to the hypertonicity-induced Na+ conductance in rat hepatocytes. FEBS Lett. 494, 125–128.

    PubMed  Google Scholar 

  74. Heinzinger, H., van den Boom, F., Tinel, H., and Wehner, F. (2001) In rat hepatocytes, the hypertonic activation of Na+ conductance and Na+−K+−2Cl symport-but not Na+−H+ antiport-is mediated by protein kinase C. J. Physiol. (Lond.) 536, 703–715.

    CAS  Google Scholar 

  75. Lawonn, P., Hoffmann, E. K., Hougaard, C., and Wehner, F. (2003) A cell shrinkage-induced non-selective cation conductance with a novel pharmacology in Ehrlich-Lettre-ascites tumour cells. FEBS Lett. 539, 115–119.

    PubMed  CAS  Google Scholar 

  76. Feranchak, A. P., Berl, T., Capasso, J., Wojtaszek, P. A., and Fitz, J. G. (2001) p38 MAP kinase modulates liver cell volume through inhibition of membrane Na+ permeability. J. Clin. Invest. 108, 1495–1504.

    PubMed  CAS  Google Scholar 

  77. Suzuki, M., Sato, J., Kutsuwada, K., Ooki, G., and Imai, M. (1999) Cloning of a stretch-inhabitable nonselective cation channel. J. Biol. Chem. 274, 6330–6335.

    PubMed  CAS  Google Scholar 

  78. Okada, Y., Hazama, A., Hashimoto, A., Maruyama, Y., and Kubo, M. (1992) Exocytosis upon osmotic swelling in human epithelial cells. Biochim. Biophys. Acta 1107, 201–205.

    PubMed  CAS  Google Scholar 

  79. Greger, R., Allert, N., Fröbe, U., and Normann, C. (1993) Increase in cytosolic Ca2+ regulates exocytosis and Cl conductance in HT29 cells. Pflügers Arch. 424, 329–334.

    PubMed  CAS  Google Scholar 

  80. Ross, P. E., Garber, S. S., and Cahalan, M. D. (1994) Membrane chloride conductance and capacitance in Jurkat T lymphocytes during osmotic swelling. Biophys. J. 66, 169–178.

    PubMed  CAS  Google Scholar 

  81. Heinke, S., Raskin, G., De Smet, P., Droogmans, G., Van Driessche, W., and Nilius, B. (1997) Simultaneous measurement of during cell swelling in macrovascular endothelium. Cell Physiol. Biochem. 7, 19–24.

    CAS  Google Scholar 

  82. Tohda, H., Foskett, J. K., O'Brodovich, H., and Marunaka, Y. (1994) Cl regulation of a Ca2+-activated nonselective cation channel in beta-agonist-treated fetal distal lung epithelium. Am. J. Physiol. 266, C104-C109.

    PubMed  CAS  Google Scholar 

  83. Robertson, M. A. and Foskett, J. K. (1994) Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl]i. Am. J. Physiol. 267, C146-C156.

    PubMed  CAS  Google Scholar 

  84. Grinstein, S., Clarke, C. A., Dupre, A., and Rothstein, A. (1982) Volume-induced increase of anion permeability in human lymphocytes. J. Gen. Physiol. 80, 801–823.

    PubMed  CAS  Google Scholar 

  85. Hoffmann, E. K., Simonsen, L. O., and Lambert, I. H. (1984) Volume-induced increase of K+ and Cl permeabilities ascites tumor cells. Role of internal Ca2+. J. Membr. Biol. 78, 211–222.

    PubMed  CAS  Google Scholar 

  86. Chamberlin, M. E. and Strange, K. (1989) Anisosmotic cell volume regulation: a comparative view. Am. J. Physiol. 257, C159-C173.

    PubMed  CAS  Google Scholar 

  87. Motais, R., Fiévet, B., Borgese, F., and Garcia-Romeu, F. (1997) Association of the band 3 protein with a volume-activated, anion and amino-acid channel: a molecular approach. J. Exp. Biol. 200, 361–367.

    PubMed  CAS  Google Scholar 

  88. Pasantes-Morales, H., Franco, R., Torres-Marquez, M. E., Hernandez-Fonseca, K., and Ortega, A. (2000) Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell. Physiol. Biochem. 10, 361–370.

    PubMed  CAS  Google Scholar 

  89. Lauf, P. K. and Adragna, N. C. (2000) K−Cl cotransport: properties and molecular mechanism. Cell Physiol. Biochem. 10, 341–354.

    PubMed  CAS  Google Scholar 

  90. Thornhill, W. B. and Laris, P. C. (1984) KCl loss and cell shrinkage in the Ehrilich ascites tumour cell induced by hypotonic media, 2-deoxyglucose and propanolol. Biochem. Biophys. Acta 773, 207–218.

    PubMed  CAS  Google Scholar 

  91. Perry, P. B. and O'Neill, W. C. (1993) Swelling-activated K fluxes in vascular endothelial cells: volume regulation via K−Cl cotransport and K channel. Am. J. Physiol. 265, C763-C769.

    PubMed  CAS  Google Scholar 

  92. Shen, M.-R., Chou, C.-Y., and Ellory, J. C. (2000) Volume-sensitive KCl cotransport associated with human cervical carcinogenesis. Pflügers Arch. 440, 751–760.

    PubMed  CAS  Google Scholar 

  93. Orlando, G. S., Tobey, N. A., Wang, P., Abdulnour-Nakhoul, S., and Orlando, R. C. (2002) Regulatory volume decrease in human esophageal epithelial cells. Am. J. Physiol. 283, G932-G937.

    CAS  Google Scholar 

  94. Jennings, M. L. and Schultz, R. K. (1991) Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide. J. Gen. Physiol. 97, 799–817.

    PubMed  CAS  Google Scholar 

  95. Kaji, D. M. and Tsukitani, Y. (1991) Role of protein phosphatase in activation of KCl cotransport in human erythrocytes. Am. J. Physiol. 260, C176-C180.

    PubMed  CAS  Google Scholar 

  96. Cossins, A. R. (1991) A sense of cell size. Nature 352, 667–668.

    PubMed  CAS  Google Scholar 

  97. Dunham, P. B., Klimczak, J., and Logue, P. J. (1993) Swelling activation of K−Cl cotransport in LK sheep erythrocytes: a three state process. J. Gen. Physiol. 101, 733–766.

    PubMed  CAS  Google Scholar 

  98. Sachs, J. R. and Martin, D. W. (1993) The role of ATP in swelling-stimulated K−Cl cotransport in human red cell ghosts: phosphorylation-dephosphorylation events are not in the signal transduction pathway. J. Gen. Physiol. 102, 551–573.

    PubMed  CAS  Google Scholar 

  99. Jennings, M. J. (1999) Volume-senseitive K+/Cl cotransport in rabbit erythrocytes. Analysis of the rate-limiting activation and inactivation events. J. Gen. Physiol. 114, 743–757.

    PubMed  CAS  Google Scholar 

  100. Christensen, O. (1987) Mediation of cell volume regulation by Ca2+ influx through stretchactivated channels. Nature 330, 66–68.

    PubMed  CAS  Google Scholar 

  101. Ubl, J., Murer, H., and Kolb, H.-A. (1988) Hypotonic shock evokes opening of Ca2+-activated K channels in opossum kidney cells. Pflügers Arch. 412, 551–553.

    PubMed  CAS  Google Scholar 

  102. Taniguchi, J. and Guggino, W. B. (1989) Membrane stretch: a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am. J. Physiol. 257, F347-F352.

    PubMed  CAS  Google Scholar 

  103. Dubé, L., Parent, L., and Sauvé, R. (1990) Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells. Am. J. Physiol. 259, F348-F356.

    PubMed  Google Scholar 

  104. Kawahara, K., Ogawa, A., and Suzuki, M. (1991) Hyposmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells. Am. J. Physiol. 260, F27-F33.

    PubMed  CAS  Google Scholar 

  105. Christensen, O. and Hoffmann, E. K. (1992) Cell swelling activates K+ and Cl channels as well as nonselective, stretch-activated cation channels in Ehrlich ascites tumor cells. J. Membr. Biol. 129, 13–36.

    PubMed  CAS  Google Scholar 

  106. Weiss, H. and Lang, F. (1992) Ion channels activated by swelling of Madin Darby Canine Kidney (MDCK) cells. J. Membr. Biol. 126, 109–114.

    PubMed  CAS  Google Scholar 

  107. Ling, B. N., Webster, C. L., and Eaton, D. C. (1992) Eicosanoids modulate apical Ca2+-dependent K+ channels in cultured rabbit principal cells. Am. J. Physiol. 263, F116-F126.

    PubMed  CAS  Google Scholar 

  108. Schlatter, E. (1993) Regulation of ion channels in the cortical collecting duct. Renal Physiol. Biochem. 16, 21–36.

    PubMed  CAS  Google Scholar 

  109. Park, K.-P., Beck, J. S., Douglas, I. J., and Brown, P. D. (1994) Ca2+-activated K+ channels are involved in regulatory volume decrease in acinar cells isolated from the rat lacrimal gland. J. Membr. Biol. 141, 193–201.

    PubMed  CAS  Google Scholar 

  110. Stoner, L. C. and Morley GE (1995) Effect of basolateral or apical hyposmolarity on apical maxi K channels of everted rat collecting tubule. Am. J. Physiol. 268, F569-F580.

    PubMed  CAS  Google Scholar 

  111. Khanna, R., Chang, M. C., Joiner, W. J., Kaczmarek, L. K., and Schlichter, L. C. (1999) hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J. Biol. Chem. 274, 14838–14849.

    PubMed  CAS  Google Scholar 

  112. Weskamp, M., Seidl, W., and Grissmer, S. (2000) Characterization of the increase in [Ca2+]i during hypotonic shock and the involvement of Ca2+-activated K+ channels in the regulatory volume decrease in human osteoblast-like cells. J. Membr. Biol. 178, 11–20.

    PubMed  CAS  Google Scholar 

  113. Sackin, H. (1989) A stretch-activated K+ channel sensitive to cell volume. Proc. Natl. Acad. Sci. U.S.A. 86, 1731–1735.

    PubMed  CAS  Google Scholar 

  114. Cemerikic, D. and Sackin, H. (1993) Substrate activation of mechanosensitive, whole cell currents in renal proximal tubule. Am. J. Physiol. 264, F697-F714.

    PubMed  CAS  Google Scholar 

  115. Martina, M., Morzymas, J. W., and Vittur, F. (1997) Membrane stretch activates a potassium channel in pig articular chondrocytes. Biochim. Biophys. Acta 1329, 205–210.

    PubMed  CAS  Google Scholar 

  116. Vanoye, C. G. and Reuss, L. (1999) Stretch-activated single K+ channels account for whole-cell currents elicited by swelling. Proc. Natl. Acad. Sci. U. S. A. 96, 6511–6516.

    PubMed  CAS  Google Scholar 

  117. Duranton, C., Mikulovic, E., Tauc, M., Avella, M., and Poujeol P. (2000) Potassium channels in primary cultures of seawater fish gill cells. Channel activation by hypotonic shock. Am. J. Physiol. 279, R1659-R1670.

    CAS  Google Scholar 

  118. Reuss, L., Vanoye, C. A., Altenberg, G. A., Vergara, L., Subramaniam, M., and Torres, R. (2000) Cell-volume changes and ion conductances in amphibian gallbladder epithelium. Cell. Physiol. Biochem. 10, 385–392.

    PubMed  CAS  Google Scholar 

  119. Pácha, J., Frindt, G., Sackin, H., and Palmer, L. G. (1991) Apical maxi K channels in inter-calated cells of CCT. Am. J. Physiol. 261, F696-F705.

    PubMed  Google Scholar 

  120. Kawakubo, T., Naruse, K., Matsubara, T., Hotta, N., and Sokabe, M. (1999) Characterization of a newly found stretch-activated KCa,ATP channel in cultured chick ventricular myocytes. Am. J. Physiol. 276, H1827-H1838.

    PubMed  CAS  Google Scholar 

  121. Falke, L. C. and Misler, S. (1989) Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells. Proc. Natl. Acad. Sci. U. S. A. 86, 3919–3923.

    PubMed  CAS  Google Scholar 

  122. Schoenmakers, Th. J. M., Vaudry, H., and Cazin, L. (1995) Osmo- and mechanosensitivity of the transient outward K+ current in a mammalian neuronal cell line. J. Physiol. (Lond.) 489, 419–430.

    CAS  Google Scholar 

  123. Baraban, S. C., Bellingham, M. C., Berger, A. J., and Schwartzkroin, P. A. (1997) osmolarity modulates K+ channel function on rat hippocampal interneurons but not CA1 pyramidal neurons. J. Physiol. (Lond.) 498, 679–689.

    CAS  Google Scholar 

  124. Sasaki, N., Mitsuiye, T., Wang, Z., and Noma, A. (1994) Increase of the delayed rectifier K+ and Na+−K+ pump currents by hypotonic solutions in guinea pig cardiac myocytes. Circ. Res. 75, 887–895.

    PubMed  CAS  Google Scholar 

  125. Deutsch, C. and Chen, L.-Q. (1993) Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc. Natl. Acad. Sci. U. S. A. 99, 10036–10040.

    Google Scholar 

  126. Lock, H. and Valverde, M. A. (2000) Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelia cells. J. Biol. Chem. 275, 34849–34852.

    PubMed  CAS  Google Scholar 

  127. Niemeyer, M. I., Cid, L. P., Barros, L. F., and Sepulveda, F. V. (2001) Modulation of the twopore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 276, 43166–43174.

    PubMed  CAS  Google Scholar 

  128. Wang, J., Morishima, S., and Okada, Y. (2002) IK channels are involved in the regulatory volume decrease in human epithelial cells. Am. J. Physiol. 284, C77-C84.

    Google Scholar 

  129. Kim, D. and Fu, C. (1993) Activation of a nonselective cation channels by swelling in atrial cells. J. Membr. Biol. 135, 27–37.

    PubMed  CAS  Google Scholar 

  130. Duncan, R. L., Kizer, N., Barry, E. L. R., Friedman, P. A., and Hruska, K. A. (1996) Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells. Proc. Natl. Acad. Sci. U. S. A. 93, 1864–1869.

    PubMed  CAS  Google Scholar 

  131. Clemo, H. F. and Baumgarten, C. M. (1997) Swelling-activated Gd3+-sensitive cation current and cell volume regulation in rabbit ventricular myocytes. J. Gen. Physiol. 110, 297–312.

    PubMed  CAS  Google Scholar 

  132. Grunnet, M., Jespersen, T., MacAulay, N., Jorgensen, N. K., Schmitt, N., Pongs, O., et al. (2003) KCNQ1 channels sense small changes in cell volume. J. Physiol. (Lond.) 549, 419–427.

    CAS  Google Scholar 

  133. Thiemann, A., Grunder, S., Pusch, M., and Jentsch, T. J. (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356, 57–60.

    PubMed  CAS  Google Scholar 

  134. Grunder, S., Thiemann, A., Pusch, M., and Jentsch, T. J. (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360, 759–762.

    PubMed  CAS  Google Scholar 

  135. Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. (2002) Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568.

    PubMed  CAS  Google Scholar 

  136. Strange, K., Emma, F., and Jackson, P. S. (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270, C711-C730.

    PubMed  CAS  Google Scholar 

  137. Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. (1997) Properties of volume-regulated and anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69–119.

    PubMed  CAS  Google Scholar 

  138. Okada, Y., Oiki, S., Hazama, A., and Morishima, S. (1998) Criteria for the molecular identification of the volume-sensitive outwardly rectifying Cl channel. J. Gen. Physiol. 112, 365–367.

    PubMed  CAS  Google Scholar 

  139. Okada, Y. (1999) A scaffolding for regulation of volume-sensitive Cl channels. J. Physiol. (Lond.) 520, 2.

    CAS  Google Scholar 

  140. Tilly, B. C., van den Berghe, N., Tertoolen, L. G. J., Edixhoven, M. J., and de Jonge, H. R. (1993) Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J. Biol. Chem. 268, 19919–19922.

    PubMed  CAS  Google Scholar 

  141. Tilly, B. C., Edixhoven, M. J., Tertoolen, L. G. J., Morii, N., Saitoh, Y., Narumiya, S., et al. (1996) Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol. Biol. Cell 7, 1419–1427.

    PubMed  CAS  Google Scholar 

  142. Crépel, V., Panenka, W., Kelly, M. E. M., and MacVicar, B. A. (1998) Mitogen-activated protein and tyrosine kinases in the activation of astrocyte volume-activated chloride current. J. Neurosci. 15, 1196–1206.

    Google Scholar 

  143. Lepple-Wienhues, A., Szabò, I., Laun, T., Kaba, N. K., Gulbins, E., and Lang, F. (1998) The tyrosine kinase p56ick mediates activation of swelling-induced chloride channels in lymphocytes. J. Cell Biol. 141, 281–286.

    PubMed  CAS  Google Scholar 

  144. Voets, T., Manolopoulos, V., Eggermont, J., Ellory, C., Droogmans, G., and Nilius, B. (1998) Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. J. Physiol. (Lond.) 506, 341–352.

    CAS  Google Scholar 

  145. Shi, C., Barnes, S., Coca-Prados, M., and Kelly, M. E. (2002) Protein tyrosine kinase and protein phosphatase signaling pathways regulate volume-sensitive chloride currents in a nonpigmented ciliary epithelial cell line. Invest. Ophthalmol. Vis. Sci. 43, 1525–1532.

    PubMed  Google Scholar 

  146. Doroshenko, P. (1998) Pervanadate inhibits volume-sensitive chloride current in bovine chromaffin cells. Pflügers Arch. 435, 303–309.

    PubMed  CAS  Google Scholar 

  147. Thoroed, S. M., Bryan-Sisneros, A., and Doroshenko, P. (1999) Protein phosphotyrosine phosphatase inhibitors suppress regulatory volume decrease and the volume-sensitive Cl conductance in mouse fibroblasts. Pflügers Arch. 438, 133–140.

    PubMed  CAS  Google Scholar 

  148. Feranchak, A. P., Roman, R. M., Schwiebert, E. M., and Fitz, J. G. (1998) Phosphatidylinositol 3-kinase contributes to cell volume regulation through effects on ATP release. J. Biol. Chem. 273, 14906–14911.

    PubMed  CAS  Google Scholar 

  149. Nilius, B., Voets, T., Prenen, J., Barth, H., Aktories, K., Kaibuchi, K., et al. (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cell. J. Physiol. (Lond.) 516, 67–74.

    CAS  Google Scholar 

  150. Nilius, B., Prenen, J., Walsh, M. P., Carton, I., Bollen, M., Droogmans, G., et al. (2000) Myosin light chain phosphorylation-dependent modulation of volume-regulated anion channels in macrovascular endothelium. FEBS Lett. 466, 346–350.

    PubMed  CAS  Google Scholar 

  151. Oiki, S., Kubo, M., and Okada, Y. (1998) Electrophysiological properties of volume-regulated Cl channels in intestinal epithelial cells, in Cell Volume Regulation: The Molecular Mechanism and Volume Sensing Machinery (Okada, Y., ed.), Elsevier, Amsterdam, pp. 125–129.

    Google Scholar 

  152. Cannon, C. L., Basavappa, S., and Strange, K. (1998) Intracellular ionic strength regulates the volume sensitivity of a swelling-activated anion channel. Am. J. Physiol. 275, C416-C422.

    PubMed  CAS  Google Scholar 

  153. Nilius, B., Prenen, J., Voets, T., Eggermont, J., and Droogmans, G. (1998) Activation of volume-regulated chloride currents by reduction of intracellular ionic strength in bovine endothelial cell. J. Physiol. (Lond.) 506, 353–361.

    CAS  Google Scholar 

  154. Voets, T., Droogmans, G., Raskin, G., Eggermont, J., and Nilius, B. (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl. Acad. Sci. U. S. A. 96, 5298–5303.

    PubMed  CAS  Google Scholar 

  155. Sabirov, R. Z., Prenen, J., Tomita, T., Droogmans, G., and Nilius, B. (2000) Reduction of ionic strength activates single volume-regulated anion channels (VRAC) in endothelial cells. Pflügers Arch. 439, 315–320.

    PubMed  CAS  Google Scholar 

  156. Wang, Y., Roman, R., Lidofski, S. D., and Fitz, J. G. (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc. Natl. Acad. Sci. U. S. A. 93, 12020–12025.

    PubMed  CAS  Google Scholar 

  157. Roman, R. M., Wang, Y., Lidofsky, S. D., Feranchak, A. P., Lomri, N., Scharschmidt, B. F., et al. (1997) Hepatocellular ATP-binding cassette protein expression enhances ATP release and autocrine regulation of cell volume. J. Biol. Chem. 272, 21970–21976.

    PubMed  CAS  Google Scholar 

  158. Roman, R. M., Feranchak, A. P., Salter, K. D., Wang, Y., and Fitz, J. G. (1999) Endogenous ATP release regulates Cl secretion in cultured human and rat biliary epithelial cells. Am. J. Physiol. 276, G1391-G1400.

    PubMed  CAS  Google Scholar 

  159. Feranchak, A. P., Fitz, J. G., and Roman, R. M. (2000) Volume-sensitive purinergic signaling in human hepatocytes. J. Hepatol. 33, 174–182.

    PubMed  CAS  Google Scholar 

  160. Hazama, A., Shimizu T., Ando-Akatsuka, Y., Hayashi, S., Tanaka, S., Maeno, E., et al. (1999) Swelling-induced, CFTR-independent ATP release from a human epithelial cell line. Lack of correlation with volume-sensitive Cl channels. J. Gen. Physiol. 114, 525–533.

    PubMed  CAS  Google Scholar 

  161. Dezaki, K., Tsumura, T., Maeno, E., and Okada, Y. (2000) Receptor-mediated facilitation of cell volume regulation by swelling-induced ATP release in human epithelial cells. Jpn. J. Physiol. 50, 235–241.

    PubMed  CAS  Google Scholar 

  162. Hazama, A., Fan, H., Abdullaev, I., Maeno, E., Tanaka, S., Ando-Akatsuka, Y., et al. (2000) Swelling-activated, cystic fibrosis transmembrane conductance regulator-augmented ATP release and Cl conductances in C127 cells. J. Physiol. (Lond.) 523, 1–11.

    CAS  Google Scholar 

  163. Lemonnier, L., Prevarskaya, N., Shuba, Y., VandenAbeele, F., Nilius, B., Mazurier, J., et al. (2002) Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels. FASEB J. 16, 222–224.

    PubMed  CAS  Google Scholar 

  164. Shen, M. R., Furla, P., Chou, C. Y., and Ellory, J. C. (2002) Myosin light chain kinase modulates hypotonicity-induced Ca2+ entry and Cl channel activity in human cervical cancer cells. Pflügers Arch. 444, 276–285.

    PubMed  CAS  Google Scholar 

  165. Barriere, H., Belfodil, R., Rubera, I., Tauc, M., Poujeol, C., Bidet, M., et al. (2003) CFTR null mutation altered cAMP-sensitive and swelling-activated Cl currents in primary cultures of mouse nephron. Am. J. Physiol. 284, F796-F811.

    CAS  Google Scholar 

  166. Sabirov, R. Z., Dutta, A. K., and Okada, Y. (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J. Gen. Physiol. 118, 251–266.

    PubMed  CAS  Google Scholar 

  167. Reisin, I. L., Prat, A. G., Abraham, E. H., Amara, J. F., Grygory, R. J., Ausiello, D. A., et al. (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J. Boil. Chem. 269, 20584–20591.

    CAS  Google Scholar 

  168. Schwiebert, E. K., Egan, M. E., Hwang, T.-H., Fulmer, S. B., Allen, S. S., Cutting, G. R., et al. (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81, 1063–1073.

    PubMed  CAS  Google Scholar 

  169. Hisadome, K., Koyama, T., Kimura, C., Droogmans, G., Ito, Y., and Oike, M. (2002) Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J. Gen. Physiol. 119, 511–520.

    PubMed  CAS  Google Scholar 

  170. Dutta, A. K., Okada, Y., and Sabirov, R. Z. (2002) Regulation of an ATP-conductive large-conductance anion channel and swelling-induced ATP release by arachidonic acid. J. Physiol. (Lond.) 542, 803–816.

    CAS  Google Scholar 

  171. Bell, P. D., Lapointe, J.-Y., Sabirov, R., Hayashi, S., Peti-Peterdi, J., Manabe, K., et al. (2003) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc. Natl. Acad. Sci. U.S.A. 100, 4322–4327.

    PubMed  CAS  Google Scholar 

  172. Kirk, K. (1997) Swelling-activated organic osmolyte channels. J. Membr. Biol. 158, 1–16.

    PubMed  CAS  Google Scholar 

  173. Kimelberg, H. K. and Mongin, A. A. (1998) Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology, in Cell Volume Regulation (Lang, F., ed.), Karger, Basel, pp. 240–257.

    Google Scholar 

  174. Hand, M., Morrison, R., and Strange, K. (1997) Characterization of volume-sensitive organic osmolyte efflux and anion current in Xenopus oocytes. J. Membr. Biol. 157, 9–16.

    PubMed  CAS  Google Scholar 

  175. Manolopoulos, V. G., Droogmans G., and Nilius, B. (1997) Hypotonicity and thrombin activate taurine efflux in BC3H1 and C2C12 myoblasts that is down regulated during differentiation. Biochem. Biophys. Res. Commun. 232, 74–79.

    PubMed  CAS  Google Scholar 

  176. Manolopoulos, V. G., Voets, T., Declercq, P. E., Droogmans, G., and Nilius, B. (1997) Swelling-activated efflux of taurine and other organic osmolytes in endothelial cells. Am. J. Physiol. 273, C214-C222.

    PubMed  CAS  Google Scholar 

  177. Rutledge, E. M., Aschner, M., and Kimelberg, H. K. (1998) Pharmacological characterization of swelling-induced D-[3H]aspartate release from primary astrocyte cultures. Am. J. Physiol. 274, C1511-C1520.

    PubMed  CAS  Google Scholar 

  178. Rutledge, E. M., Mongin, A. A., and Kimelberg, H. K. (1999) Intracellular ATP depletion inhibits swelling-induced D-[3H]aspartate release from primary astocyte cultures. Brain Res. 842, 39–45.

    PubMed  CAS  Google Scholar 

  179. Hoffmann, E. K. and Lambert, I. H. (1994) On the similarity between the small Cl channel and the taurine channel activated after cell swelling in Ehrlich ascites tumor cells. Jpn. J. Physiol. 44, S49-S53.

    PubMed  CAS  Google Scholar 

  180. Morán, J., Miranda, D., Peña-Segura, C., and Pasantes-Morales, H. (1997) Volume regulation in NIH/3T3 cells not expressing P-glycoprotein. II. Chloride and amino acid fluxes. Am. J. Physiol. 272, C1804-C1809.

    PubMed  Google Scholar 

  181. Stutzin, A., Torres, R., Oporto, M., Pacheco, P., Eguiguren, A. L., Cid, L. P., et al. (1999) Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am. J. Physiol. 277, C392-C402.

    PubMed  CAS  Google Scholar 

  182. Pollock, A. S. and Arieff, A. I. (1980) Abnormalities of cell volume regulation and their functional consequences. Am. J. Physiol. 239, F195-F205.

    PubMed  CAS  Google Scholar 

  183. Häussinger, D. and Lang, F. (1991) Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim. Biophys. Acta 1071, 331–350.

    PubMed  Google Scholar 

  184. Häussinger, D., Lang, F., and Gerok, W. (1994) Regulation of cell function by the cellular hydration state. Am. J. Physiol. 267, E343-E355.

    PubMed  Google Scholar 

  185. Strange, K. (1994) Are all cell volume changes the same? News Physiol. Sci. 9, 223–228.

    Google Scholar 

  186. Lang, F., Busch, G. L., Völkl, H., and Häussinger, D. (1995) Cell volume: a second message in regulation of cellular function. News Physiol. Sci. 10, 18–22.

    CAS  Google Scholar 

  187. McManus, M. L., Churchwell, K. B., and Strange, K. (1995) Regulation of cell volume in health and disease. New Engl. J. Med. 333, 1260–1266.

    PubMed  CAS  Google Scholar 

  188. Burg, M. B., Kwon, E. D., and Kültz, D. (1996) Osmotic regulation of gene expression. FASEB J. 10, 1598–1606.

    PubMed  CAS  Google Scholar 

  189. Takuwa, N. and Takuwa, Y. (1996) Signal transduction of cell-cycle regulation: its temporospacial architecture. Jpn. J. Physiol. 46, 431–449.

    PubMed  CAS  Google Scholar 

  190. Galcheva-Gargova, Z., Dérijard, B., Wu, I.-H., and Davis, R. J. (1994) An osmosensing signal transduction pathway in mammalian cells. Science 265, 806–808.

    PubMed  CAS  Google Scholar 

  191. Han, J., Lee, J.-D., Bibbs, L., and Ulevitch, R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.

    PubMed  CAS  Google Scholar 

  192. Maeda, T., Wurgler-Murphy, S. M., and Saito, H. (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242–245.

    PubMed  CAS  Google Scholar 

  193. Maeda, T., Takekawa, M., and Saito, H. (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554–558.

    PubMed  CAS  Google Scholar 

  194. Häussinger, D. and Schliess, F. (1999) Osmotic induction of signaling cascades: role in regulation of cell function. Biochem. Biophys. Res. Commun. 255, 551–555.

    PubMed  Google Scholar 

  195. Allen, S. P., Liang, H. M., Hill, M. A., and Prewitt, R. L. (1996) Elevated pressure stimulates protooncogene expression in isolated mesenteric arteries. Am. J. Physiol. 271, H1517-H1523.

    PubMed  CAS  Google Scholar 

  196. MacKenna, D. A., Dolfi, F., Vuori, K., and Ruoslahti, E. (1998) Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J. Clin. Invest. 101, 301–310.

    Article  PubMed  CAS  Google Scholar 

  197. Brophy, C. M., Mills, I., Rosales, O., Isales, C., and Sumpio, B. E. (1993) Phospholipase C: a putative mechanotransducer for endothelial cell response to acute hemodynamic changes. Biochem. Biophys. Res. Commun. 190, 576–581.

    PubMed  CAS  Google Scholar 

  198. Lehtonen, J. Y. A. and Kinnunen, P. K. J. (1995) Phospholipase A2 as a mechanosensor. Biophys. J. 68, 1888–1894.

    Article  PubMed  CAS  Google Scholar 

  199. Thoroed, S. M., Lauritzen, L., Lambert, I. H., Hansen, H. S., and Hoffmann, E. K. (1997) Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J. Membrane Biol. 160, 47–58.

    CAS  Google Scholar 

  200. Basavappa, S., Pedersen, S. F., Jørgensen, N. K., Ellory, J. C., and Hoffmann, E. K. (1998) Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J. Neurophysiol. 79, 1441–1449.

    PubMed  CAS  Google Scholar 

  201. Sukharev, S. I., Blount, P., Martinac, B., and Kung, C. (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657.

    PubMed  CAS  Google Scholar 

  202. Kanzaki, M., Nagasawa, M., Kojima, I., Sato, C., Naruse, K., Sokabe, M., et al. (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285, 882–886.

    PubMed  CAS  Google Scholar 

  203. Sachs, F. (1987) Baroreceptor mechanisms at the cellular level. Fed. Proc. 46, 12–16.

    PubMed  CAS  Google Scholar 

  204. Morris, C. E. (1990) Mechanosensitive ion channels. J. Membrane Biol. 113, 93–107.

    CAS  Google Scholar 

  205. Sackin, H. (1995) Mechanosensitive channels. Annu. Rev. Physiol. 57, 333–353.

    PubMed  CAS  Google Scholar 

  206. Summers, J. C., Trais, L., Lajvardi, R., Hergan, D., Buechler, R., Chang, H., et al. (1997) Role of concentration and size of intracellular macromolecules in cell volume regulation. Am. J. Physiol. 273, C360-C370.

    PubMed  CAS  Google Scholar 

  207. Eggermont, J. (2003) Rho's role in cell volume: sensing, strutting, or signaling? Focus on “Hyperosmotic stress activates Rho: differential involvement in Rho kinase-dependent MLC phosphorylation and NKCC activation.” Am. J. Physiol. 285, C509-C511.

    CAS  Google Scholar 

  208. Oiki, S., Kubo, M., and Okada, Y. (1995) Mg2+ and ATP-dependence of volume-sensitive Cl channels in human epithelial cells. Jpn. J. Physiol. 44 (Suppl. 2), S77-S79.

    Google Scholar 

  209. Doroshenko, P. (1999) High intracellular chloride delays the activation of the volume-sensitive chloride conductance in mouse L-fibroblasts. J. Physiol. (Lond.) 514, 437–446.

    CAS  Google Scholar 

  210. Hardy, S. P., Goodfellow, H. R., Valverde, M. A., Gill, D. R., Sepúlveda, F. V., and Higgins, C. F. (1995) Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. EMBO J. 14, 68–75.

    PubMed  CAS  Google Scholar 

  211. Miwa, A., Ueda, K., and Okada, Y. (1997) Protein kinase C-independent correlation between P-glycoprotein expression and volume sensitivity of Cl channel. J. Membrane Biol. 157, 63–69.

    CAS  Google Scholar 

  212. Vennekens, R., Trouet, D., Vankeerberghen, A., Voets, T., Cuppens, H., Eggermont, J., et al. (1999) Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator. J. Physiol. (Lond.) 515, 75–85.

    CAS  Google Scholar 

  213. Ando-Akatsuka, Y., Abdullaev, I. F., Lee, E. L., Okada, Y., and Sabirov, R. Z. (2002) Down-regulation of volume-sensitive Cl channels by CFTR is mediated by the second nucleotide-binding domain. Pflügers Arch. 445, 177–186.

    PubMed  CAS  Google Scholar 

  214. Hoffmann, E. K. and Pedersen, S. F. (1998) Sensors and signal transduction in the activation of cell volume regulatory ion transport systems, in Cell Volume Regulation (Lang, F., ed.), Karger, Basel, pp. 50–78.

    Google Scholar 

  215. Okada, Y., Maeno, E., Shimizu, T., Dezaki, K., Wang, J., and Morishima, S. (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J. Physiol. (Lond.) 532, 3–16.

    CAS  Google Scholar 

  216. Bortner, C. D. and Cidlowski, J. A. (1996) Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am. J. Physiol. 271, C950-C961.

    PubMed  CAS  Google Scholar 

  217. Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., and Okada, Y. (2000) Normotonic cell shrinkage due to disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. U.S.A. 97, 9487–9492.

    PubMed  CAS  Google Scholar 

  218. Mori, S., Morishima, S., Dezaki, K., Takasaki, M., and Okada, Y. (2001) Effects of lactacidosis upon cell volume and volume-sensitive Cl currents in neuronally differentiated NG108-15 cells. Jpn. J. Physiol. 51, (Suppl.) S119.

    Google Scholar 

  219. Nabekura, T., Morishima, S., Cover, T. L., Mori, S., Kannan, H., Komune, S., et al. (2003) Recovery from lactacidosis-induced glial cell swelling with the aid of exogenous anion channels. Glia 41, 247–259.

    PubMed  Google Scholar 

  220. Lang, F., Ritter, M., Gamper, N., Huber, S., Fillon, S., Tanneur, V., et al. (2000) Cell volume in the regulation of cell proliferation and apoptotic cell death. Cell Physiol. Biochem. 10, 417–428.

    PubMed  CAS  Google Scholar 

  221. Eggermont, J., Trouet, D., Carton, I., and Nilius, B. (2001) Cellular function and control of volume-regulated anion channels. Cell Biochem. Biophys. 35, 263–274.

    PubMed  CAS  Google Scholar 

  222. Nilius, B. (2001) Chloride channels go cell cycling. J. Physiol. (Lond.) 532, 581.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunobu Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, Y. Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochem Biophys 41, 233–258 (2004). https://doi.org/10.1385/CBB:41:2:233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:2:233

Index Entries

Navigation