Skip to main content
Log in

Molecular determinants of voltage-gated potassium currents in vascular smooth muscle

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstracts

Voltage-gated K+ channels (Kv) play an important role in regulating contraction of vascular smooth muscle cells (VSMC) through their effects on membrane potential and on voltage-gated Ca2+ channel activity. Kv channels are tetrameric structures consisting of four identical or closely related pore-forming α subunits that may be associated with accessory subunits. More than 30 different gene products that contribute to Kv channel complexes have been identified to date, some of which are subject to alternative splicing. Consequently, there is an enormous potential diversity in the molecular composition and properties of possible Kv channel complexes. Electrophysiologic measurements of K+ currents in VSMC suggest the presence of multiple Kv channel assemblies including: (1) rapidly inactivating, 4-aminopyridine-sensitive, (2) slowly inactivating, tetraethylammonium-insensitive, and (3) noninactivating, tetraethylammonium-sensitive components. Based on electrophysiological and expression studies, it is likely that the latter two components are represented by a heteromultimeric complex of Kv1.2 with either Kv1.4 or Kv1.5 and a Kvβ1 subunit, and by at least Kv2.1, respectively. The identity of the first A-type current component, however, is not clear at this time. The relative abundance of these current components appears to vary in VSMC from different anatomical sites, from animals of different ages, and perhaps in VSMC within specific vascular segments. Expression of numerous Kv α and β subunits has been demonstrated in VSMC at both the gene and protein level. However, the number of expressed subunits appears to be much larger than the number of apparent Kv current components. It remains unclear if all of these transcripts are expressed in VSCM or in other cell types in the tissue, or if expression patterns are homogenous or heterogeneous in VSMC at a given site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanders, K. M. (2001) Mechanisms of calcium handling in smooth muscles. J. Appl. Physiol. 91, 1438–1449.

    PubMed  CAS  Google Scholar 

  2. Somlyo, A. P. and Somlyo, A. V. (1994) Signal transduction and regulation in smooth muscle. Nature 372, 231–236.

    PubMed  CAS  Google Scholar 

  3. Flaim, S. F. (1986). Calcium antagonists and vascular smooth muscle, in Recent Advances in Arterial Disease: Atherosclerosis, Hypertension and Vasospasm (Tulenko, T. N. and Cox, R. H., eds.), Alan R. Liss, Inc., New York, pp. 311–352.

    Google Scholar 

  4. Somlyo, A. P. and Somlyo, A. V. (2000) Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522, 177–185.

    PubMed  CAS  Google Scholar 

  5. Ratz, P. H. and Murphy, R. A. (1987) Contributions of intracellular and extracellular Ca2+ pools to activation of myosin phosphorylation and stress in swine carotid media. Circ. Res. 60, 410–421.

    PubMed  CAS  Google Scholar 

  6. Haeusler, G. (1978) Relationship between noradrenaline induced depolarization and contraction in vascular smooth muscle. Blood Vessels 15, 46–54.

    PubMed  CAS  Google Scholar 

  7. Haeusler, G. (1983) Contraction, membrane potential and calcium fluxes in rabbit pulmonary arterial muscle. Fed. Proc. 42, 263–268.

    PubMed  CAS  Google Scholar 

  8. Rubart, M., Patlak, J. B. and Nelson, M. T. (1996) Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations. J. Gen. Physiol. 107, 459–472.

    PubMed  CAS  Google Scholar 

  9. Fleischman, B. K., Murray, R. K. and Kotlikoff, M. I. (1994) Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc. Natl. Acad. Sci. U S A 91, 11914–11918.

    Google Scholar 

  10. Nelson, M. T., Patlak, J. B., Worley, J. F. and Standen, N. B. (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. 259, C3-C18.

    PubMed  CAS  Google Scholar 

  11. Nelson, M. T. and Quayle, J. M. (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799-C822.

    PubMed  CAS  Google Scholar 

  12. Michelakis, E. D., Reeve, H. L., Huang, J. M., Tolarova, S., Nelson, D. P., Weir, E. K., et al. (1997) Potassium channel diversity in vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 75, 889–897.

    PubMed  CAS  Google Scholar 

  13. Archer, S. L., Huang, J. M. C., Reeve, H. L., Hampl, V., Tolarova, S., Michelakis, E. D., et al. (1996) Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ. Res. 78, 431–442.

    PubMed  CAS  Google Scholar 

  14. Smirnov, S. V. and Aaronson, P. I. (1992) Ca2+-activated and voltage-gated K+ currents in smooth muscle cells isolated from human mesenteric arteries. J. Physiol. 457, 431–454.

    PubMed  CAS  Google Scholar 

  15. Quayle, J. M., Nelson, M. T. and Standen, N. B. (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 77, 1165–1232.

    PubMed  CAS  Google Scholar 

  16. Cox, R. H. (2002) Changes in the expression and function of arterial potassium channels during hypertension. Vasc. Pharmacol. 38, 13–23.

    CAS  Google Scholar 

  17. Cox, R. H. and Rusch, N. J. (2002) New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure. Microcirculation 9, 243–257.

    PubMed  CAS  Google Scholar 

  18. Cox, R. H. and Tulenko, T. N. (1995) Altered contractile and ion channel function in rabbit portal vein with dietary atherosclerosis. Am. J. Physiol. 268, H2522-H2530.

    PubMed  CAS  Google Scholar 

  19. Jiang, J., Thoren, P., Caligiuri, G., Hansson, G. K., and Pernow, J. (1999) Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. Br. J. Pharmacol. 128, 637–646.

    PubMed  CAS  Google Scholar 

  20. Liu, Y. and Gutterman, D. D. (2002) The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel-mediated vasodilation. Vasc. Pharmacol. 38, 43–49.

    CAS  Google Scholar 

  21. Li, H., Chai, Q., Gutterman, D. D. and Liu, Y. (2003) Elevated glucose impairs cAMP-mediated vasodilation by reducing Kv channel activity in rat small coronary smooth muscle cells. Am. J. Physiol. 285, H1213-H1219.

    CAS  Google Scholar 

  22. Chandy, K. G. and Gutman, G. A. (1995) Voltage-gated potassium channel genes, in Handbook of Receptors and Channels. Ligand- and Voltage-Gated Ion Channels (North, R. A., ed.), CRC Press, Boca Raton, FL, pp. 1–71.

    Google Scholar 

  23. Coetzee, W. A., Amarillo, Y., Chiu, J., Chow, A., Lau, D., McDormack, T., et al. (1999) Molecular diversity of K+ channels. Ann. N. Y. Acad. Sci. 868, 233–285.

    PubMed  CAS  Google Scholar 

  24. Xu, J. and Li, M. (1998) Auxiliary subunits of Shaker-type potassium channels. Trends CV Med. 8, 229–234.

    CAS  Google Scholar 

  25. Li, M. and Adelman, J. P. (2000) ChIPing away at potassium channel regulation. Nat. Neurosci. 3, 202–204.

    PubMed  CAS  Google Scholar 

  26. Yu, W., Xu, J. and Li, M. (1996) NAB domain is essential for the subunit assembly of both α-α and α-β complexes of Shaker-like potassium channels. Neuron 16, 441–453.

    PubMed  CAS  Google Scholar 

  27. Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman, G. A., et al. (1994) Tharmacological characterization of five cloned voltage-gated channels, types Kv1.1, 1.2, 1.3, 1.5 and 3.1 stably expressed in mammalian cell lines. Mol. Pharmacol. 45, 1227–1234.

    PubMed  CAS  Google Scholar 

  28. Judge, S. I. V., Yeh, J. Z., Goolsby, J. E., Monteiro, M. J., and Bever, C. T., Jr. (2002) Determinants of 4-aminopyridine sensitivity in a human brain Kv1.4 K+ channel: phenylalanine substitutions in leucine heptad repeat region stabilize channel closed state. Mol. Pharmacol. 61, 913–920.

    PubMed  CAS  Google Scholar 

  29. Guihard, G., Bellocq, C., Grelet, E. and Escande, D. (2003) Human Kv1.6 current displays a C-type inactivation when re-expressed in cos-7 cells. Biochem. Biophys. Res. Commun. 311, 83–89.

    PubMed  CAS  Google Scholar 

  30. Kalman, K., Nguyen, A., Tseng-Crank, J., Dukes, I. A., Chandy, G., Hustad, C. M., et al. (1998) Genomic organization, chromosomal localization, tissue distribution and biophysical characterization of a novel mammalian Shaker-related voltage-gated potassium channel Kv1.7. J. Biol. Chem. 273, 5851–5857.

    PubMed  CAS  Google Scholar 

  31. Shi, G., Kleinklaus, A. K., Marrion, N. V. and Trimmer, J. S. (1994) Properties of Kv2.1 K+ channels expressed in transfected mammalian cells. J. Biol. Chem. 269, 23204–23211.

    PubMed  CAS  Google Scholar 

  32. Conley, E. C. and Brammar, W. J. (1999) The Ion Channel FactsBook. IV. Voltage-Gated Channels, Academic Press, London, pp. 374–646.

    Google Scholar 

  33. Hatano, N., Ohya, S., Muraki, K., Clark, R. B., Giles, W. R., and Imaizumi, Y. (2004) Two arginines in the cytoplasmic C-domain are essential for voltage-dependent regulation of A-type K+ current in the Kv4 channel subfamily. J. Biol. Chem. 279, 5450–5459.

    PubMed  CAS  Google Scholar 

  34. Escoubas, P., Diochot, S., Celerier, M. L., Nakajima, T., and Lazdunski, M. (2002) Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol. Pharm. 62, 48–57.

    CAS  Google Scholar 

  35. Elinder, F., Madeja, M., and Arhem, P. (1996) Surface charges of K channels: effects of strontium on five cloned channels expressed in Xenopus oocytes. J. Gen. Physiol. 108, 325–332.

    PubMed  CAS  Google Scholar 

  36. Fink, M., Dupart, F., Lesage, F., Heurteaux, C., Romey, G., Barhanin, J., et al. (1996) A new K+ channel β subunit to specifically enhance Kv2.2 (CDRK) expression. J. Biol. Chem. 271, 26341–26348.

    PubMed  CAS  Google Scholar 

  37. Nilsson, J., Madeja, M., and Arhem, P. (2003) Local anesthetic block of Kv channels: role of the S6 helix and the S5–S6 linker for bupivacaine action. Mol. Pharmacol. 63, 1417–1429.

    PubMed  CAS  Google Scholar 

  38. Beck, E. J., Bowlby, M., An, W. F., Rhodes, K. J., and Covarrubias, M. (2002) Remodeling inactivation gating of Kv4 channels by KChlP1, a small-molecular weight calcium-binding protein. J. Physiol. 538, 691–706.

    PubMed  CAS  Google Scholar 

  39. Nakamura, T. Y., Nandi, S., Pountney, D. J., Artman, M., Rudy, B., and Coetzee, W. A. (2001) Different effects of the Ca2+-binding protein, KChIP1, on two Kv4 subfamily members, Kv4.1 and Kv4.2. FEBS Lett. 499, 205–209.

    PubMed  CAS  Google Scholar 

  40. Schrader, L. A., Anderson, A. E., Mayne, A., Pfaffinger, P. J., and Sweatt, J. D. (2002) PKA modulation of Kv4.2-encoded A-type potassium channels requires formation of a supramolecular complex. J. Neurosci. 22, 10123–10133.

    PubMed  CAS  Google Scholar 

  41. Uebele, V., England, S. K., Chaurhary, A., and Tamkun, M. M. (1996) Functional differences in Kv1.5 currents expressed in mammalian cell lines are due to the presence of endogenous Kvβ2.1 subunits. J. Biol. Chem. 271, 2406–2412.

    PubMed  CAS  Google Scholar 

  42. Peterson, K. R. and Nerbonne, J. M. (1999) Expression environment determines K+ current properties: Kv1 and Kv4 α-subunit K+ currents in mammalian cell lines. Pfluger Arch. 437, 381–392.

    Google Scholar 

  43. Ottschytsch, N., Raes, A., Van Hoorick, D., and Snyders, D. J. (2002) Obligatory heterotetramerization of three previously uncharacterized Ky channel α-subunits identified in the human genome. Proc. Natl. Acad. Sci. U S A 99, 7986–7991.

    PubMed  CAS  Google Scholar 

  44. Drewe, J. A., Verma, S., Frech, G., and Joho, R. H. (1992) Distinct spatial and temporal expression patterns of K+ channel mRNAs from different subfamilies. J. Neurosci. 12, 538–548.

    PubMed  CAS  Google Scholar 

  45. Accili, E. A., Kiehn, J., Yang, Q., Wang, Z., Brown, A. M., and Wible, B. A. (1997) Separable Kvβ subunit domains alter expression and gating of potassium channels. J. Biol. Chem. 272, 25824–25831.

    PubMed  CAS  Google Scholar 

  46. Morales, M. J., Catellino, R. C., Crews, A. L., Rasmusson, R. L., and Strauss, H. C. (1995) A novel beta-subunit increases rate of inactiviation of specific voltage-gated potassium channel alpha-subunits. J. Biol. Chem. 270, 6272–6277.

    PubMed  CAS  Google Scholar 

  47. Heinemann, S. H., Rettig, J., Graack, H.-R., and Pongs, O. (1996) Functional characterization of Kv channel β-subunits from rat brain. J. Physiol. 493, 625–633.

    PubMed  CAS  Google Scholar 

  48. Salinas, M., Dupart, E., Heurteaux, C., Hugnot, J-P., and Lazdunski, M. (1997) New modulatory α subunits for mammalian Shab K+ channels. J. Biol. Chem. 272, 24371–24379.

    PubMed  CAS  Google Scholar 

  49. Salinas, M., de Weille, J., Guillemare, E., Lazdunski, M., and Hugnot, J-P. (1997) Modes of regulation of Shab K+ channel activity by the Kv8.1 subunit. J. Biol. Chem. 272, 8774–8780.

    PubMed  CAS  Google Scholar 

  50. Sano, Y., Mochizuki, S., Miyake, A., Kitada, C., Inamura, K., Yokoi, H., et al. (2002) Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage-gated K+ channel Kv2.1. FEBS Lett. 512, 230–234.

    PubMed  CAS  Google Scholar 

  51. Patel, A. J., Lazdunski, M., and Honore, E. (1997) Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J. 16, 6615–6625.

    PubMed  CAS  Google Scholar 

  52. Hulme, J. T., Coppock, E. A., Felipe, A., Martens, J. R., and Tamkun, M. M. (1999) Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ. Res. 85, 489–497.

    PubMed  CAS  Google Scholar 

  53. Kramer, W. R., Post, M. A., Brown, A. M., and Kirsch, G. E. (1998) Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 and Kv6.1 α-subunits. Am. J. Physiol. 274, C1501-C1510.

    PubMed  CAS  Google Scholar 

  54. An, W. F., Bowly, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., et al. (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556.

    PubMed  CAS  Google Scholar 

  55. Morohashi, Y., Hatano, N., Ohya, S., Takikawa, R., Watabiki, T., Takasugi, N., et al. (2002) Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J. Biol. Chem. 277, 14965–144975.

    PubMed  CAS  Google Scholar 

  56. Nakamura, T. Y., Pountney, D. I., Oziata, A., Nandi, S., Ueda, S., and Rudy, B. (2001) A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+ currents. Proc. Natl. Acad. Sci. U S A 98, 12808–12813.

    PubMed  CAS  Google Scholar 

  57. Wible, B. A., Yang, O., Kuryshev, Y. A., Accili, E. A., and Brown, A. M. (1998) Cloning and expression of a novel K+ channel regulatory protein, KChAP. J. Biol. Chem. 273, 11745–11754.

    PubMed  CAS  Google Scholar 

  58. Kuryshev, Y. A., Gudz, T. I., Brown, A. M., and Wible, B. A. (2000) KChAP as a chaperone for specific K+ channels. Am. J. Physiol. 278, C931-C941.

    CAS  Google Scholar 

  59. de la Verga RCR, Merino, E, Becerril B and Posanni LD (1999) Novel interactions between K+ channels and scorpion toxins. Trends Pharm. Sci. 24, 222–227.

    Google Scholar 

  60. Schmalz, F., Kinsella, J., Koh, S. D., Vogalis, F., Schneider, A., Flynn, E. R. M., et al. (1998) Molecular identification of a component of delayed rectifier current in gastrointestinal smooth muscles. Am. J. Physiol. 274, G901-G911.

    PubMed  CAS  Google Scholar 

  61. Overturf, K. E., Russell, S. N., Carl, A., Vogalis, F., Hart, P. J., Hume, J. R., et al. (1994) Cloning and characterization of a Kv1.5 delayed rectifier K+ channel from vascular and visceral smooth muscles. Am. J. Physiol. 267, C1231-C1238.

    PubMed  CAS  Google Scholar 

  62. Yeola, S. W. and Snyders, D. J. (1997) Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc. Res. 33, 540–547

    PubMed  CAS  Google Scholar 

  63. M'Bared, S., Mosbah, A., Sandoz, G., Fajloun, Z., Olamendi-Portugal, T., Rochat, H., et al. (2003) Synthesis and characterization of Pi4, a scorpion toxin from Pandinus imperator that acts on K+ channels. Eur. J. Biochem. 270, 3583–3592.

    Google Scholar 

  64. Kauferstein, S., Huys, S., Lamthanh, H., Stocklin, R., Sotto, F., Menez, A, et al. (2003) A novel conotoxin inhibiting vertebrate voltage-sensitive potassium channels. Toxicon 42, 43–52.

    PubMed  CAS  Google Scholar 

  65. Koschak, A., Bugianesi, R. M., Mitterdorfer, J., Kaczoroski, G. J., Garcia, M. L., and Knaus, H-G. (1998) Subunit composition of brain voltage-gates potassium channels determined by Hongotoxin-1, a novel peptide derived from Centruroides limbatus venom. J. Biol. Chem. 273, 2639–2644.

    PubMed  CAS  Google Scholar 

  66. Garcia-Calvo, M., Leonard, R. J., Novick, J., Stevens, S. P., Schmalhofer, W., Kavzorowski, G. J., et al. (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J. Biol. Chem. 268, 18866–18874.

    PubMed  CAS  Google Scholar 

  67. Diochot, S., Schweitz, H., Beress, L., and Lazdunski, M. (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. J. Biol. Chem. 273, 6744–6749.

    PubMed  CAS  Google Scholar 

  68. Rauer, H., Pennington, M., Cahalan, M., and Chandy, K. G. (1999) Structural conservation of the pores of calciumactivated and voltage-gated potassium channels determined by a sea anemone toxin. J. Biol. Chem. 274, 21885–21892.

    PubMed  CAS  Google Scholar 

  69. Swartz, K. J. and MacKinnon, R. (1995) An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15, 941–949.

    PubMed  CAS  Google Scholar 

  70. Sanguinetti, M. C., Johnson, J. H., Hammerland, L. G., Kelbaugh, P. R., Volkmann, R. A., Saccomano, N. A., et al. (1997) Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol. Pharmacol. 51, 491–498.

    PubMed  CAS  Google Scholar 

  71. Felix, J. P., Bugianesi, R. M., Schmalhofer, W. A., Borris, R., Goetz, M. A., Hensens, O. D., et al. (1999) Identification and biochemical characterization of a novel nortripterpene inhibitor of the human lymphocyte voltage-gated potassium channel, Kv1.3. Biochemistry 38, 4922–4930.

    PubMed  CAS  Google Scholar 

  72. Schmalhofer, W. A., Boa, J., McManus, O. B., Green, B., Matyskiela, M., Wunderler, D., et al. (2002) Identification of a new class of inhibitors of the voltage-gated potassium channel, Kv1.3, with immunosuppressant properties. Biochemistry 41, 7781–7794.

    PubMed  CAS  Google Scholar 

  73. Robards, S. L. and Tamkun, M. M. (1991) Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc. Natl. Acad. Sci. U S A 88, 1798–1802.

    Google Scholar 

  74. Cox, R. H., Folander, K., and Swanson, R. (2001) Differential expression of voltage-gated K+ channel genes in arteries from spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 37, 1315–1322.

    PubMed  CAS  Google Scholar 

  75. Cox, R. H., Wang, Z., McGroarty, M., Folander, K., and swanson, R. (2005) Expression of voltage gated K+ channels in arteries of Wistar Kyoto and spontaneously hypertensive rats. Am. J. Hyperten., submitted.

  76. Fountain, S. J., Cheong, R., Flemming, R., Mair, L., Sivaprasadarano, A., and Beech, D. J. (2004) Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle. J. Physiol. 556, 29–42.

    PubMed  CAS  Google Scholar 

  77. Wang, J., Juhaszova, M., Rubin, L. J., and Yuan, X. J. (1997) Hypoxia inhibits gene expression of voltage-gated K+ channel α-subunits in pulmonary artery smooth muscle cells. J. Clin. Invest. 100, 2347–2353.

    Article  PubMed  CAS  Google Scholar 

  78. Osipenko, O. N., Tate, R. J., and Gurney, A. M. (2000) Potential role of Kv3.1b channels as oxygen sensors. Circ. Res. 86, 534–540.

    PubMed  CAS  Google Scholar 

  79. Cornfield, D. N., Saqueton, C. B., Porter, V. A., Herron, J., Resnik, E., Haddad, I. Y., et al. (2000) Voltage gated K+ channel activity in ovine pulmonary vasculature is developmentally regulated. Am. J. Physiol. 278, L1297-L1304.

    CAS  Google Scholar 

  80. Yuan, J. X. J., Aldinger, A. M., Juhaszova, M., Wang, J., Conte, J. V., Gaine, S. P., et al. (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98, 1400–1406.

    PubMed  CAS  Google Scholar 

  81. Archer, S. L., Souli, E., Dinh-Xuan, A. T., Schremmer, B., Mercier, J. C., El Yaagoubi, A., et al. (1998) Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vascoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J. Clin. Invest. 101, 2310–2330.

    Google Scholar 

  82. Yuan, X. J., Wang, J., Juhaszova, M., Golovina, V. A., and Rubin, L. J. (1998) Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. Am. J. Physiol. 274, L621-L635.

    PubMed  CAS  Google Scholar 

  83. Platoshyn, O., Yu, Y., Golovina, V. A., McDaniel, S. S., Krick, S., Li, L., Wang, J. Y., Rubin, M. L., and Yuan, X. J. (2001) Chronic hypoxia decreases Kv channel expression and function in pulmonary artery myocytes. Am. J. Physiol. 280, L801-L812.

    CAS  Google Scholar 

  84. Coppock, E. A. and Tamkun, M. M. (2001) Differential expression of Kv channel α-and β-subunits in the bovine pulmonary arterial circulation. Am. J. Physiol. 281, L1350-L1360.

    CAS  Google Scholar 

  85. Xu, C., Lu, Y., Tang, G., and Wang, R. (1999) Expression of voltage-dependent K+ channel genes in mesenteric artery smooth muscle cells. Am. J. Physiol. 277, G1065-G1063.

    Google Scholar 

  86. Xu, C., Tang, G., Lu, T., and Wang, R. (2000) Molecular basis of voltage-dependent delayed rectifier K+ channels in smooth muscle cells from rat tail artery. Life Sci. 66, 2023–2033.

    PubMed  CAS  Google Scholar 

  87. Ohya, S., Tanaka, M., Watanabe, M., and Maizumi, Y. (2000) Diverse expression of delayed rectifier K+ channel subtype transcipts in several types of smooth muscles of the rat. J. Smooth Muscle Res. 36, 101–115.

    PubMed  CAS  Google Scholar 

  88. Lu, Y., Zhang, J., Tang, G., and Wang, R. (2001) Modulation of voltage-dependent K+ channel current in vascular smooth muscle cells from rat mesenteric arteries. J. Membrane Biol. 180, 163–175.

    CAS  Google Scholar 

  89. Aihara, Y., Jahromi, B. S., Yassari, R., Nikitina, E., Agbaje-Williams, M., and Macdonald, R. L. (2003) Molecular profile of vascular ion channels after experimental subarachnoid hemorrhage. J. Cereb Blood Flow Metab. 24, 75–83.

    Google Scholar 

  90. Cheong, A., Dedman, A. M., and Beech, D. J. (2001) Expression and function of native potassium channels (Kvα1) subunits in terminal arterioles of rabbit. J. Physiol. 534, 691–700.

    PubMed  CAS  Google Scholar 

  91. Cheong, A., Dedman, A. M., Xu, S. Z., and Beech, D. J. (2001) Kvα1 channels in murine arterioles: differential cellular expression and regulation of diameter. Am. J. Physiol. 281, H1057-H1065.

    CAS  Google Scholar 

  92. Albarwani, S., Nemetz, L. T., Madden, J. A., Tobin, A. A., England, S. K., Pratt, P. F., et al. (2003) Voltage-gated K+ channels in rat small cerebral arteries: molecular identity of the functional channels. J. Physiol. 551, 751–763.

    PubMed  CAS  Google Scholar 

  93. Fergus, D. J., Martens, J. R., and England, S. K. (2003) Kv channel subunits that contribute to voltage-gated K+ current in renal vascular smooth muscle. Pflugers Arch. 445, 697–704.

    PubMed  CAS  Google Scholar 

  94. Thorneloe, K. S., Chen, T. T., Grier, E. F., Horowitz, B., Cole, W. C., and Walsh, M. P. (2001) Molecular composition of 4-aminopyridine-sensitive voltage-gated K+ channels of vascular smooth muscle. Circ. Res. 89, 1030–1037.

    PubMed  CAS  Google Scholar 

  95. Clement-Chomienne, O., Ishii, K., Walsh, M. P., and Cole, W. C. (1999) Identification, cloning and expression of rabbit vascular smooth muscle Kv1.5 and comparison with native delayed rectifier K+ current. J. Physiol. 515, 653–667.

    PubMed  CAS  Google Scholar 

  96. Archer, S. L., Huang, J. M. C., Reeve, H. L., Hampl, V., Tolarovfa, S., Michelakis, E., et al. (1996) Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries, determines their response to nitric oxide and hypoxia. Circ. Res. 78, 431–442.

    PubMed  CAS  Google Scholar 

  97. Smirnov, S. V., Beck, R., Tammaro, P., Ishii, T., and Aaronson, P. I. (2002) Electrophysiologically distinct smooth muscle cell subtypes in rat conduit and resistance pulmonary arteries. J. Physiol. 538, 867–878.

    PubMed  CAS  Google Scholar 

  98. Hogg, D. S., McMurray, G., and Kozlowski, R. Z. (2002) Endothelial cells freshly isolated from small pulmonary arteries of the rat possess multiple distinct K+ current profiles. Lung 180, 203–214.

    PubMed  CAS  Google Scholar 

  99. Sadanaga, T., Ohya, Y., Ohtsubo, T., Goto, K., Fujii, K., and Abe, I. (2002) Decreased 4-aminopyridine sensitive K+ currents in endothelial cells from hypertensive rats. Hyperten. Res. 25, 589–596.

    CAS  Google Scholar 

  100. Cox, R. H., Lozinskaya, I. M., and Dietz, N. I. (2001) Differences in K+ current components in mesenteric artery myoctyes from WKY and SHR. Am. J. Hyperten. 14, 897–907.

    CAS  Google Scholar 

  101. Robertson, B. E. and Nelson, M. T. (1994) Aminopyridine inhibition and voltage dependence of K+ currents in smooth muscle cells from cerebral arteries. Am. J. Physiol. 267, C1589-C1597.

    PubMed  CAS  Google Scholar 

  102. Latorre, R. (1994) Molecular workings of large conductance (Maxi) Ca2+-activated K+ channels, in Handbook of Membrane Channels (Peracchia, C., ed.), Academic Press, San Diego, CA, pp. 79–102.

    Google Scholar 

  103. Cox, R. H. (1996) Comparison of K+ channel properties in freshly isolated myocytes from thoracic aorta of WKY and SHR. Am. J. Hyperten. 9, 884–894.

    CAS  Google Scholar 

  104. Gomez, J. P., Ghisdal, P., and Morel, N. (2000) Changes of the potassium currents in rat aortic smooth muscle cells during postnatal development. Pflugers Arch. 441, 388–397.

    PubMed  CAS  Google Scholar 

  105. Belevych, A. E., Beck, R., Tammaro, P., Poston, L., and Smirnov, S. V. (2002) Developmental changes in the functional characteristics and expression of voltage-gated K+ channel currents in rat aortic myocytes. Cardiovasc. Res. 54, 152–161.

    PubMed  CAS  Google Scholar 

  106. Yuan, X. J. (1995) Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circ. Res. 77, 370–378.

    PubMed  CAS  Google Scholar 

  107. Evans, A. M., Osipenko, O. N., Haworth, S. G., and Gurney, A. M. (1998) Resting potentials and potassium currents during development of pulmonary artery smooth muscle cells. Am. J. Physiol. 175, H887-H899.

    Google Scholar 

  108. Cox, R. H., Lozinskaya, I. M., Matsuda, K., and Dietz, N. J. (2002) Ramipril treatment alters Ca2+ and K+ channels in small mesenteric arteries from WKY and SHR. Am. J. Hyperten. 15, 879–889.

    CAS  Google Scholar 

  109. Gelband, C. H. and Hume, J. R. (1995) [Ca2+]i inhibition of K+ channels in canine renal artery. Novel mechanism for agonist-induced membrane depolarization. Circ. Res. 77, 121–130.

    PubMed  CAS  Google Scholar 

  110. LeBlanc, N., Wan, X., and Leung, P. M. (1994). Physiological role of Ca2+-activated and voltage-dependent K+ currents in rabbit coronary myocytes. Am. J. Physiol. 266, C1523-C1537.

    PubMed  CAS  Google Scholar 

  111. Volk, K. A., Matsuda, J. J., and Shibata, E. F. (1991) A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells. J. Physiol. 439, 751–768.

    PubMed  CAS  Google Scholar 

  112. Volk, K. A. and Shibata, E. F. (1993) Single delayed rectifier potassium channels from rabbit coronary artery myocytes. Am. J. Physiol. 264, H1146-H1153.

    PubMed  CAS  Google Scholar 

  113. Ishikawa, T., Eckman, D. M., and Keef, K. D. (1997) Characterization of delayed rectifier K+ currents in rabbit coronary artery cells near resting membrane potential. Can. J. Physiol. Pharmacol. 75, 1116–1122.

    PubMed  CAS  Google Scholar 

  114. Ishikawa, T., Hume, J. R., and Keef, K. D. (1993) Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells. J. Physiol. 468, 379–400.

    PubMed  CAS  Google Scholar 

  115. Beech, D. J. and Bolton, T. B. (1989) A voltage-dependent outward current with fast kinetics in single smooth muscle cells isolated, from rabbit portal vein. J. Physiol. 412, 397–414.

    PubMed  CAS  Google Scholar 

  116. Beech, D. J. and Bolton, T. M. (1989) Two components of potassium current activated by depolarization, of single smooth muscle cells from the rabbit portal vein. J. Physiol. 418, 293–309.

    PubMed  CAS  Google Scholar 

  117. Aiello, E. A., Walsh, M. P., and Cole, W. C. (1995) Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am. J. Physiol. 268, H926-H934.

    PubMed  CAS  Google Scholar 

  118. Aiello, E. A., Malcolm, A. T., Walsh, M. P., and Cole, W. C. (1998) β-adrenergic activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle. Am. J. Physiol. 275, H448-H459.

    PubMed  CAS  Google Scholar 

  119. Clement-Chomienne, O., Walsh, M. P., and Cole, W. C. (1996) Angiotensin II activation of protein kinase C decreases delayed rectifier K+ current in rabbit vascular myocytes. J. Physiol. 495, 689–700.

    PubMed  CAS  Google Scholar 

  120. Carl, A. (1995) Multiple components of delayed rectifier K+ current in canine colonic smooth muscle. J. Physiol. 484, 339–353.

    PubMed  CAS  Google Scholar 

  121. Russell S. N., Overturf, K. E., and Horowitz, B. (1994) Heterotetramer formation and charybdotoxin sensitivity of two K+ channels cloned from smooth muscle. Am. J. Physiol. 267, C1729-C1733.

    PubMed  CAS  Google Scholar 

  122. Rhodes, K. J., Keilbaugh, S. A., Barrezueta, N. X., Lopez, K. L., and Trimmer, J. S. (1995) Association and colocalization of K+ channel alpha- and beta-subunit polypeptides in rat brain. J. Neurosci. 15, 5360–5371.

    PubMed  CAS  Google Scholar 

  123. Coleman, S. K., Newcombe, J., Pryke, J., and Dolly, J. O. (1999) Subunit composition of Kv1 channels in human CNS. J. Neurochem. 73, 849–858.

    PubMed  CAS  Google Scholar 

  124. Kerr, P. M., Clement-Chomienne, O., Thorneloe, K. S., Chen, T. T., Ishii, K., Sontag, D. P., et al. (2001) Heteromultimeric Kv1.2–Kv1.5 channels underlie 4-aminopyridine-sensitive delayed rectifier K+ current of rabbit vascular myocytes. Circ. Res. 89, 1038–1044.

    PubMed  CAS  Google Scholar 

  125. Manganas, L. N. and Trimmer, J. S. (2000) Subunit composition determines Kv1 potassium channel surface expression. J. Biol. Chem. 275, 29685–29693.

    PubMed  CAS  Google Scholar 

  126. Berg, T. (2002) The vascular response to the K+ channel inhibitor 4-aminopyridine in hypertensive rats. Eur. J. Pharmacol. 466, 301–310.

    Google Scholar 

  127. Barman, S. A. (1998) Potassium channels modulate hypoxic pulmonary vasoconstriction. Am. J. Physiol. 275, L64-L70.

    PubMed  CAS  Google Scholar 

  128. Knot, H. J. and Nelson, M. T. (1995) Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am. J. Physiol. 269, H348-H355.

    PubMed  CAS  Google Scholar 

  129. Horiuchi, T., Dietrich, H. H., Tsugane, S., and Dacey, R. G. (2001) Role of potassium channels in regulation of brain arteriolar tone. Comparison of cerebrum versus brain stem. Stroke 32, 218–224.

    PubMed  CAS  Google Scholar 

  130. Cook, N. S. (1989) Effect of some potassium channel blockers on contractile responses of the rabbit aorta. J. Cardiovasc. Pharmacol. 23, 299–306.

    Article  Google Scholar 

  131. Asano, M., Nomura, Y. Y., Ito, K., Uyama, Y., Imaizumi, Y., and Watanabe, M. (1995) Increased function of volt-age-dependent Ca++ channels and Ca++-activated K+ channels in resting state of femoral arteries from spontaneously hypertensive rats at prehypertensive stage. J. Pharmacol. Exp. Ther. 275, 775–783.

    PubMed  CAS  Google Scholar 

  132. Jonas, E. A. and Kaczmarek, L. K. (1996) Regulation of potassium channels by protein kinases. Curr. Opin. Neurobiol. 6, 318–323.

    PubMed  CAS  Google Scholar 

  133. Herzig, S. and Neumann, J. (2000) Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol. Rev. 80, 173–210.

    PubMed  CAS  Google Scholar 

  134. Siami, Y., and Kung, C. (2002) Calmodulin as an ion channel subunit, Annu. Rev. Physiol. 65, 289–311.

    Google Scholar 

  135. Cox, R. H. and Petrou, S. (1999) Ca2+ influx inhibits voltage-dependent and augments Ca2+-dependent K+ currents in arterial myocytes. Am. J. Physiol. 277, C51-C63.

    PubMed  CAS  Google Scholar 

  136. Mulvany, M. J., Nilsson, H., and Flatman, J. A. (1982). Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J. Physiol. 332, 363–373.

    PubMed  CAS  Google Scholar 

  137. Hayabuchi, Y., Standen, N. B., and Davies, N. W. (2001) Angiotensin II inhibits and alters kinetics of voltagegated K+ channels of rat arterial smooth muscle. Am. J. Physiol. 281, H2480-H2489.

    CAS  Google Scholar 

  138. Cogolludo, A., Moreno, L., Bosca, L., Tamargo, J., and Perez-Vizcaino, F. (2003) Thromboxane A2-induced inhibition of voltage-gate K+ channels and pulmonary vasoconstriction: role of protein kinase Cζ. Circ. Res. 93, 656–663.

    PubMed  CAS  Google Scholar 

  139. Kwak, Y. G., Navarro-Polanco, A., Grobaski, T., Gallagher, D. J., and Tamkun, M. M. (1999) Phosphorylation is required for alteration of Kv1.5 K+ channel function by the Kv\1.3 subunit J. Biol. Chem. 274, 25355–25361.

    PubMed  CAS  Google Scholar 

  140. Gong, J., Xu, J., Bezanilla, M., van Huizen, R., Derin, R. and Li, M. (1999) Differential stimulation of PKC phosphorylation of potassium channels by ZIP1, and ZIP2. Science 285, 1565–1569.

    PubMed  CAS  Google Scholar 

  141. Koh, S. D., Sanders, K. M., and Carl, A. (1996) Regulation of smooth muscle delayed rectifier K+ channels by protein kinase A. Pflugers Arch. 432, 401–412.

    PubMed  CAS  Google Scholar 

  142. Heaps, C. L. and Bowles, D. K. (2002)_Gender-specific K+-channel contribution to adenosine-induced relaxation in coronary arterioles. J. Appl. Physiol. 92, 550–558.

    PubMed  CAS  Google Scholar 

  143. Zhao, Y. J., Wang, J., Rubin, L. J., and Yuan, X. J. (1998) Roles of K+ and Cl channels in cAMP-induced pulmonary vasodilation. Exp. Lung Res. 24, 71–82.

    Article  PubMed  CAS  Google Scholar 

  144. Murakoshi, H., Shi, G. F., Scannevin, R. H., and Trimmer, J. S. (1997) Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent activation. Mol. Pharmacol. 52, 821–828.

    PubMed  CAS  Google Scholar 

  145. Martens, J. R., Kwak, Y. G., and Tamkun, M. M. (1999) Modulation of Kv channel α/β subunit interactions. Trends Cardiovasc. Med. 9, 253–258.

    PubMed  CAS  Google Scholar 

  146. Huang, X. Y., Morielli, A. D., and Peralta, E. G. (1994) Molecular basis of cardiac potassium channel stimulation by protein kinase A. Proc. Natl. Acad. Sci. U S A 91, 624–628.

    PubMed  CAS  Google Scholar 

  147. Schrader, L. A., Anderson, A. E., Mayne, A., Pfaffinger, P. J., and Sweatt, J. D. (2002) PKA modulation of Kv4.2-encoded A-type potassium channels requires formation of a supramolecular complex. J. Neurosci. 22, 10123–10133.

    PubMed  CAS  Google Scholar 

  148. Levin, G., Chikvashvili, D., Singer-Lahat, D., Peretz, T., Thornhill, W. B., and Lotan, I. (1996) Phosphorylation of a K+ channel α subunit modulates the inactivation conferred by a β subunit: involvement of the cytoskeleton. J. Biol. Chem. 271, 29321–29328.

    PubMed  CAS  Google Scholar 

  149. Yuan, X. J., Tod, M. L., Rubin, L. J., and Blaustein, M. P. (1996) NO hyperpolarizes pulmonary artery smooth muscle cells and decreased the intracellular Ca2+ concentration by activating voltage-gated K+ channels. Proc. Natl. Acad. Sci. U S A 93, 10489–10494.

    PubMed  CAS  Google Scholar 

  150. Zhao, Y. J., Wang, J., Rubin, L. J., and Yuan, X. J. (1997) Inhibition of Kv and KCa channels antagonizes NO-induced relaxation in pulmonary artery. Am. J. Physiol. 272, H904-H912.

    PubMed  CAS  Google Scholar 

  151. Sobey, C. G. and Faraci, F. M. (1999) Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide. Br. J. Pharmacol. 136, 1437–1443.

    Google Scholar 

  152. Luykenaar, K. D., Brett, S. E., We, B. N., Wiehler, W. B., and Welsh, D. G. (2004) Pyrimidine nucleotides suppress KDR currents and depolarize rat cerebral arteries by activating Rho kinase. Am. J. Physiol. 286, H1088-H1100.

    CAS  Google Scholar 

  153. Cachero, T. G., Morielli, A. D., and Peralta, E. G. (1998) The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell 93, 1077–1085.

    PubMed  CAS  Google Scholar 

  154. Huang, X. Y., Morielli, A. D., and Peralta, E. G. (1993) Tyrosine kinase-dependent suppression of a potassium channel by the G protein-couple m1 muscarinic acetylcholine receptor. Cell 75, 1145–1156.

    PubMed  CAS  Google Scholar 

  155. Storey, N. M., O'Bryan, J. P., and Armstrong, D. L. (2002) Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Curr. Biol. 12, 27–33.

    PubMed  CAS  Google Scholar 

  156. Koh, S. D., Perrino, B. A., Hatton, W. J., Kenyon, J. L., and Sanders, K. M. (1999) Novel regulation of the A-type K+ current in murine proximal colon by calcium-calmodulin-dependent protein kinase II. J. Physiol. 517, 75–84.

    PubMed  CAS  Google Scholar 

  157. Tessier, S., Karczewski, P., Krause, E-G., Pansard, Y., Acar, C., Lang-Lazdunski, M., et al. (1999) Regulation of the transient outward K+ current by Ca2+/calmodulin-dependent protein kinase II in human atrial myocytes. Circ. Res. 85, 810–819.

    PubMed  CAS  Google Scholar 

  158. Roeper, J., Lorra, C., and Pongs, O. (1997) Frequency-dependent inactivation of mammalian A-type K+ channel Kv1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J. Neurosci. 17, 3379–3391.

    PubMed  CAS  Google Scholar 

  159. Macica, C. M., and Kaczmarek, L. K. (2001) Casein kinase 2 determines the voltage dependence of the Kv3.1 channel in auditory neurons and transfected cells. J. Neurosci. 21, 1160–1168.

    PubMed  CAS  Google Scholar 

  160. Tang, X. D., Santarelli, L. C., Heinemann, S. H., and Hoshi, T. (2004) Metabolic regulation of potassium channels. Annu. Rev. Physiol. 66, 131–159.

    PubMed  CAS  Google Scholar 

  161. Kourie, J. I. (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 275, C1-C24.

    PubMed  CAS  Google Scholar 

  162. Sweeney, M., and Yuan, J. X. J. (2000) Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Respir. Res. 1, 40–48.

    PubMed  CAS  Google Scholar 

  163. Post, J. M., Hume, J. R., Archer, S. L., and Weir, E. K. (1992) Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am. J. Physiol. 262, C882-C890.

    PubMed  CAS  Google Scholar 

  164. Perez-Garcia, M. T., Lopez-Lopez, J. R., and Gonzalez, C. (1999) Kvbeta 1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J. Gen. Physiol. 113:897–907.

    PubMed  CAS  Google Scholar 

  165. Yuan, X. J., Tod, M. L., Rubin, L. J., and Blaustein, M. P. (1990) Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am. J. Physiol. 259, H281-H289.

    PubMed  CAS  Google Scholar 

  166. Fu, X. W., Wang, D., Nurse, C. A., Dinauer, M. C., and Cutz, E. (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc. Natl. Acad. Sci. USA 97, 4374–4379.

    PubMed  CAS  Google Scholar 

  167. Owens, G. K. and Wise, G. (1997) Regulation of differentiation/maturation in vascular smooth muscle cells by hormones and growth factors. Agents Actions Suppl. 48, 3–24.

    PubMed  CAS  Google Scholar 

  168. Neylon, C. B. (2002) Potassium channels and vascular proliferation. Vasc. Pharmacol. 38, 35–41.

    CAS  Google Scholar 

  169. Soliven, B., Ma, L., Bae, H., Asttali, B., Sobko, A., and Iwase, T. (2003) PDGF upregulates delayed rectifier via Src family kinases and sphingosine kinase in oligoden-droglial progenitors. Am. J. Physiol. 254, C85-C93.

    Google Scholar 

  170. Yuan, X. J., Goldman, W. F., Tod, M. L., Rubin, L. J., and Blaustein, M. P. (1993) Ionic currents in rat pulmonary and mesenteric arterial myocytes in primary culture and subculture. Am. J. Physiol. 264, L107-L115.

    PubMed  CAS  Google Scholar 

  171. Ojama, K., Sabet, A., Kenessey, A., Shenoy, R., and Klein, I. (1999) Regulation of rat cardiac Kv1.5 gene expression by thyroid hormone is rapid and chamber specific. Endocrinology 140, 3170–3176.

    Google Scholar 

  172. Zhang, T-T., Takimoto, K., Stewart, A. F. R., Zhu, C., and Levitan, E. S. (2001) Independent regulation of cardiac Kv4.3 potassium channel expression by angiotensin II and phenylephrine. Circ. Res. 88, 476–482.

    PubMed  CAS  Google Scholar 

  173. Xiong, Z., Sperelakis, N., Noffsinger, A., and Fenoglio-Preiser, C. (1995) Potassium currents in rat colonic smooth muscle cells and changes during development and aging. Pflug Arch. 430, 563–572.

    CAS  Google Scholar 

  174. Yu, S. P. (2003) Regulation and critical role of potassium homeostatis in apoptosis. Prog. Neurobiol. 70, 363–368.

    PubMed  CAS  Google Scholar 

  175. Remillard, C. V., and Yuan, JX-J. (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. 286, L49-L67.

    CAS  Google Scholar 

  176. Marklund, A., Behnam-Motlagh, P., Henriksson, R., and Grankvist, K. (2001) Bumetanide annihilation of amphotericin B-induced apoptosis and cytotoxicity is due to its effect on cellular K+ flux. J. Antimicrob. Chemother. 48, 781–186.

    PubMed  CAS  Google Scholar 

  177. Dallaporta, B., Marchetti, P., dePablo, M. A., Maisse, C., Duc, H. T., Metivier, D., et al. (1999) Plasma membrane potential in thymocyte apoptosis. J. Immunol. 162, 6534–6542.

    PubMed  CAS  Google Scholar 

  178. Jones, A. W. (1973) Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats and influence of aldosterone, norepinephrine and angiotensin. Circ. Res. 33 563–572.

    PubMed  CAS  Google Scholar 

  179. Liu, Y., Jones, A. W., and Sturek, M. (1994) Increased barium influx and potassium current in stroke-prone spontaneously hypertensive rats. Hypertension 23, 1091–1095.

    PubMed  CAS  Google Scholar 

  180. Liu, Y., Jones, A. W., and Sturek, M. (1995) Ca2+-dependent K+ current in arterial smooth muscle cells from aldosterone-salt hypertensive rats. Am. J. Physiol. 269, H1246-H1257.

    PubMed  CAS  Google Scholar 

  181. Liu, Y., Pleyte, K., Knaus, H-G., and Rusch, N. J. (1997) Increased expression of Ca2+-sensitive K+ channels in aorta of hypertensive rats. Hypertension 30, 1043–1049.

    Google Scholar 

  182. Simode, L. A., Sylvester, J. T., and Sham, J. S. K. (1999) Chronic hypoxia alters effects of endothelin and angiotensin on K+ currents in pulmonary arterial myocytes. Am. J. Physiol. 277, L431-L439.

    Google Scholar 

  183. Li, K. X., Fouty, B., McMurty, I. F., and Rodman, D. M. (1999) Enhanced ETA-receptor-mediated inhibition of Kv channels in hypoxic rat pulmonary artery myocytes. Am. J. Physiol. 277, H363-H370.

    PubMed  CAS  Google Scholar 

  184. Yuan, X-J., Wang, J., Juhaszova, M., Gaine, S. P., and Rubin, L. J. (1998) Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351, 726–727.

    PubMed  CAS  Google Scholar 

  185. Quan, L. and Sobey, S. G. (2000) Selective effects of subarachnoid hemorrhage on cerebral vascular responses to 4-aminopyridine in rats. Stroke 31, 2460–2465.

    PubMed  CAS  Google Scholar 

  186. Martens, J. R. and Gelband, C. H. (1996) Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension. Circ. Res. 79, 295–301.

    PubMed  CAS  Google Scholar 

  187. Cox, R. H., Lozinskaya, I. M., and Dietz, N. J. (2003) Calcium exerts, a larger regulatory effect on K+ channels in small mesenteric artery myocytes from SHR compared to WKY. Am. J. Hyperten. 16, 21–27.

    CAS  Google Scholar 

  188. Murrary, T. R., Chen, L., Marshall, B. E., and Macarak, E. J. (1990) Hypoxic contraction of cultured pulmonary vascular smooth muscle cells. Am. J. Respir. Cell. Mol. Biol. 3, 457–465.

    Google Scholar 

  189. Post, J. M., Gelband, C. H., and Hume, J. R. (1995) [Ca2+]i inhibition of K+ channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization. Circ. Res. 77, 131–139.

    PubMed  CAS  Google Scholar 

  190. Elton, T. S., Oparil, S., Traylor, G. R., Hicks, P. H., Yang, R. H., Jin, H., et al. (1992) Normobaric hypoxia stimulates endothelin-1 gene expression in the rat. Am. J. Physiol. 263, R1260-R1264.

    PubMed  CAS  Google Scholar 

  191. Oparil, S., Chen, S-J., Meng, Q. C., Elton, T. S., Yano, M., and Chen, Y-F. (1995) Endothelin-A receptor prevents acute hypoxia-induced pulmonary hypertension in the rat. Am. J. Physiol. 268, L95-L100.

    PubMed  CAS  Google Scholar 

  192. Morell, N. W., Atochina, E. N., Morris, K. G., Danilov, S. M., and Stenmark, K. R. (1995) Role of angiotensin converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am. J. Physiol. 269, H1186-H1194.

    Google Scholar 

  193. Sugden, P. H. (2001) Signaling pathways in cardiac myocyte hypertrophy. Ann. Med. 33, 611–622.

    PubMed  CAS  Google Scholar 

  194. Brasier, A. R., Jamaluddin, M., Han, Y., Patterson, C., and Runge, M. S. (2001) Angiotensin II induces gene transcription through, cell-type-dependent, effects on the nuclear factor-kappa B (NF-kappa B) transcription factor. Mol. Cell Biochem. 212, 155–169.

    Google Scholar 

  195. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) The versatility and universality of calcium signaling. Nat. Rev. 1, 11–21.

    CAS  Google Scholar 

  196. Bolotina, V., Omelyanenko, V., Heyes B., Ryan, U., and Bergestovski, P. (1989). Variations of membrane cholesterol alter the kinetics of Ca2+-dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflug Arch. 415, 262–268.

    CAS  Google Scholar 

  197. Chen, M., Mason, R. P., and Tulenko, T. N. (1995) Atherosclerosis alters composition, structure and function of arterial smooth muscle plasma membranes. Biochim. Biophys. Acta 1272, 101–112.

    PubMed  Google Scholar 

  198. Liu, Y., Terata, K., Rusch N. J., and Gutterman, D. D. (2001) High glucose impairs voltage-gated K+ channel activity in rat small coronary arteries. Circ. Res., 89, 146–152.

    PubMed  CAS  Google Scholar 

  199. Yasunari, K., Kohno, M., Kano, H., Yokokawa, K., Hoio, T., and Yoshikawa, J. (1996) Possible involvement of phospholipase D and protein kinase C in vascular growth induced by elevated glucose concentration. Hypertension 28, 159–168.

    PubMed  CAS  Google Scholar 

  200. Grover, A. K. and Samson, S. E. (1989) Protection of Ca pump of coronary artery against inactivation by superoxide radical. Am. J. Physiol. 256, C666-C673.

    PubMed  CAS  Google Scholar 

  201. deSouza, N. and Simon, S. M. (2002) Glycosylation affects the rate of traffic of the Shaker potassium channel through the secretory pathway. Biochemistry 41, 11351–11361.

    CAS  Google Scholar 

  202. Shi, G. and Trimmer, J. S. (1999) Differential asparagine-linked glycosylation of voltage-gated K+ channels in mammalian brain and in transfected cells. J. Membrane Biol. 168, 265–273.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Cox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, R.H. Molecular determinants of voltage-gated potassium currents in vascular smooth muscle. Cell Biochem Biophys 42, 167–195 (2005). https://doi.org/10.1385/CBB:42:2:167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:42:2:167

Index Entries

Navigation