Skip to main content
Log in

Metabolic mechanisms of tumor resistance to T cell effector function

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Established tumors develop ways to elude destruction by the host immune system. Recent work has revealed that tumors can take advantage of the generation of metabolic dysregulation to inhibit immune responses. Effector T-cell functions are particularly sensitive to nutrient availability in the tumor microenvironment. In this review, we highlight experimental data supporting the importance of glucose, oxygen, tryptophan, and arginine for optimal T-cell function, and the mechanisms by which these nutrients may become depleted in the tumor microenvironment. These observations provide a conceptual framework for modulating metabolic features of the T cell-tumor interaction, toward the end of promoting more effective immune-mediated tumor destruction in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Radoja S, Frey AB: Cancer-induced defective cytotoxic T lymphocyte effector function: another mechanism how antigenic tumors escape immune-mediated killing. Mol Med 2000;6:465–479.

    PubMed  CAS  Google Scholar 

  2. Spiotto MT, Yu P, Rowley DA, et al.: Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 2002;17:737–747.

    Article  PubMed  CAS  Google Scholar 

  3. Johnsen AK, Templeton DJ, Sy M, Harding CV: Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 1999;163:4224–4231.

    PubMed  CAS  Google Scholar 

  4. Murray JL, Hudson JM, Ross MI, et al.: Reduced recognition of metastatic melanoma cells by autologous MART-1 specific CTL: relationship to TAP expression. J Immunother 2000;23:28–35.

    Article  PubMed  CAS  Google Scholar 

  5. Garbi N, Tan P, Diehl AD, et al.: Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol 2000;1:234–238.

    Article  PubMed  CAS  Google Scholar 

  6. Staveley-O'Carroll K, Sotomayor E, Montgomery J, et al.: Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 1998;95:1178–1183.

    Article  PubMed  Google Scholar 

  7. Beck C, Schreiber H, Rowley D: Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech 2001;52:387–395.

    Article  PubMed  CAS  Google Scholar 

  8. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683–765.

    Article  PubMed  CAS  Google Scholar 

  9. Levings MK, Bacchetta R, Schulz U, Roncarolo MG: The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 2002;129:263–276.

    Article  PubMed  CAS  Google Scholar 

  10. Iwai Y, Ishida M, Tanaka Y, et al.: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002;99:12293–12297.

    Article  PubMed  CAS  Google Scholar 

  11. Dong H, Strome SE, Salomao DR, et al.: Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8:793–800.

    PubMed  CAS  Google Scholar 

  12. Rivoltini L, Carrabba M, Huber V, et al.: Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 2002;188:97–113.

    Article  PubMed  CAS  Google Scholar 

  13. Lee KH, Panelli MC, Kim CJ, et al.: Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J Immunol 1998;161:4183–4194.

    PubMed  CAS  Google Scholar 

  14. Lee KH, Wang E, Nielsen MB, et al.: Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 1999;163:6292–6300.

    PubMed  CAS  Google Scholar 

  15. Warburg OH: The Metabolism of Tumours. Constable & Co. Ltd., London, UK, 1930.

    Google Scholar 

  16. Eskey CJ, Koretsky AP, Domach MM, Jain RK: Role of oxygen vs. glucose in energy metabolism in a mammary carcinoma perfused ex vivo: direct measurement by 31P NMR. Proc Natl Acad Sci USA 1993;90:2646–2650.

    Article  PubMed  CAS  Google Scholar 

  17. Semenza GL, Artemov D, Bedi A, et al.: ‘The metabolism of tumors’: 70 years later. Novartis Found Symp 2001;240:251–260; discussion 260–254.

    PubMed  CAS  Google Scholar 

  18. Collier JJ, Doan TT, Daniels MC, et al.: c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J Biol Chem 2003;278:6588–6595.

    Article  PubMed  CAS  Google Scholar 

  19. Semenza GL, Roth PH, Fang HM, Wang GL: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994;269:23757–23763.

    PubMed  CAS  Google Scholar 

  20. Brand KA, Hermfisse U: Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. Faseb J 1997;11:388–395.

    PubMed  CAS  Google Scholar 

  21. Shrode LD, Tapper H, Grinstein S: Role of intracellular pH in proliferation, transformation, and apoptosis. J Bioenerg Biomembr 1997;29:393–399.

    Article  PubMed  CAS  Google Scholar 

  22. Stubbs M, McSheehy PM, Griffiths JR, Bashford CL: Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 2000;6:15–19.

    Article  PubMed  CAS  Google Scholar 

  23. Newell K, Franchi A, Pouyssegur J, Tannock I: Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor actidity. Proc Natl Acad Sci USA 1993;90:1127–1131.

    Article  PubMed  CAS  Google Scholar 

  24. Yamagata M, Hasuda K, Stamato T, Tannock IF: The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 1998;77:1726–1731.

    PubMed  CAS  Google Scholar 

  25. Cham CM, Xu H, O'Keefe JP, et al.: Gene array and protein expression profiles suggest post-transcriptional regulation during CD8+ T cell differentiation. J Biol Chem 2003;278:17044–17052.

    Article  PubMed  CAS  Google Scholar 

  26. Burt BM, Humm JL, Kooby DA, et al.: Using positron emission tomography with [(18)F]FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia 2001;3:189–195.

    Article  PubMed  CAS  Google Scholar 

  27. Guppy M, Greiner E, Brand K: The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 1993;212:95–99.

    Article  PubMed  CAS  Google Scholar 

  28. MacDonald HR: Energy metabolism and T-cell-mediated cytolysis. II. Slective inhibition of cytolysis by 2-deoxy-D-glucose. J Exp Med 1977;146:710–719.

    Article  PubMed  CAS  Google Scholar 

  29. Frauwirth KA, Riley JL, Harris MH, et al.: The CD28 signaling pathway regulates glucose metabolism. Immunity 2002;16:769–777.

    Article  PubMed  CAS  Google Scholar 

  30. Jain RK: Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1999;1:241–263.

    Article  PubMed  CAS  Google Scholar 

  31. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990;82:4–6.

    Article  PubMed  CAS  Google Scholar 

  32. Brown JM, Giaccia AJ: The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998;58:1408–1416.

    PubMed  CAS  Google Scholar 

  33. Naldini A, Carraro F, Silvestri S, Bocci V: Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells. J Cell Physiol 1997;173:335–342.

    Article  PubMed  CAS  Google Scholar 

  34. Conforti L, Petrovic M, Mohammad D, et al.: Hypoxia regulates expression and activity of Kv1. 3 channels in T lymphocytes: a possible role in T cell proliferation. J Immunol 2003;170:695–702.

    PubMed  CAS  Google Scholar 

  35. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP: Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA 1992;89:10094–10098.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis RS: Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 2001;19:497–521.

    Article  PubMed  CAS  Google Scholar 

  37. MacDonald HR, Koch CJ: Energy metabolism and T-cell-mediated cytolysis. I. Synergism between inhibitors of respiration and glycolysis. J Exp Med 1977;146:698–709.

    Article  PubMed  CAS  Google Scholar 

  38. Loeffler DA, Keng PC, Baggs RB, Lord EM: Lymphocytic infiltration and cytotoxicity under hypoxic conditions in the EMT6 mouse mammary tumor. Int J Cancer 1990;45:462–467.

    Article  PubMed  CAS  Google Scholar 

  39. Nathan CF, Mercer-Smith JA, Desantis NM, Palladino MA: Role of oxygen in T cell-mediated cytolysis. J Immunol 1982;129:2164–2171.

    PubMed  CAS  Google Scholar 

  40. Caldwell CC, Kojima H, Lukashev D, et al.: Differential effeccts of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 2001;167:6140–6149.

    PubMed  CAS  Google Scholar 

  41. Mellor AL, Munn DH: Tryptophan catabolism and regulation of adaptive immunity. J Immunol 2003;170:5809–5813.

    PubMed  CAS  Google Scholar 

  42. Liebau C, Baltzer AW, Schmidt S, et al.: Interleukin-12 and interleukin-18 induce indoleamine 2,3-dioxygenase (IDO) activity in human osteosarcoma cell lines independently from interferon-gamma. Anticancer Res 2002;22:931–936.

    PubMed  CAS  Google Scholar 

  43. Munn DH, Shafizadeh E, Attwood JT, et al.: Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999;189:1363–1372.

    Article  PubMed  CAS  Google Scholar 

  44. Munn DH, Sharma MD, Lee JR, et al.: Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002;297:1867–1870.

    Article  PubMed  CAS  Google Scholar 

  45. Hwu P, Du MX, Lapointe R, et al.: Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000;164:3596–3599.

    PubMed  CAS  Google Scholar 

  46. Fallarino F, Vacca C, Orabona C, et al.: Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 2002; 14:65–68.

    Article  PubMed  CAS  Google Scholar 

  47. Lee JR, Dalton RR, Messina JL, et al.: Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest 2003;83: 1457–1466.

    Article  PubMed  CAS  Google Scholar 

  48. Uyttenhove C, Pilotte L, Theate I, et al.: Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003;9:1269–1274.

    Article  PubMed  CAS  Google Scholar 

  49. Grant R, Kapoor V: Inhibition of indoleamine 2,3-dioxygenase activity in IFN-gamma stimulated astroglioma cells decreases intracellular NAD levels. Biochem Pharmacol 2003;66:1033–1036.

    Article  PubMed  CAS  Google Scholar 

  50. Thomas SR, Mohr D, Stocker R: Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem 1994;269:14457–14464.

    PubMed  CAS  Google Scholar 

  51. Kudo Y, Boyd CA: Human placental indoleamine 2,3-dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection. Biochim Biophys Acta 2000;1500:119–124.

    PubMed  CAS  Google Scholar 

  52. Burke F, Knowles RG, East N, Balkwill FR: The role of indoleamine 2,3-dioxygenase in the anti-tumour activity of human interferon-gamma in vivo. Int J Cancer 1995;60:115–122.

    Article  PubMed  CAS  Google Scholar 

  53. Lee GK, Park HJ, Macleod M, et al.: Tryptophan deprivation sensitizes activated T cells to appoptosis prior to cell division. Immunology 2002;107:452–460.

    Article  PubMed  CAS  Google Scholar 

  54. Frumento G, Rotondo R, Tonetti M, et al.: Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 2002;196: 459–468.

    Article  PubMed  CAS  Google Scholar 

  55. Fallarino F, Grohmann U, Vacca C, et al.: T cell apoptosis by tryptophan catabolism. Cell Death Differ 2002;9:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  56. Friberg M, Jennings R, Alsarraj M, et al.: Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer 2002;101:151–155.

    Article  PubMed  CAS  Google Scholar 

  57. Flynn NE, Meininger CJ, Haynes TE, Wu G: The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 2002;56:427–438.

    Article  PubMed  CAS  Google Scholar 

  58. Schaffer M, Barbul A: Lymphocyte function in wound healing and following injury. Br J Surg 1998;85:444–460.

    Article  PubMed  CAS  Google Scholar 

  59. Mizoguchi H, O'Shea JJ, Longo DL, et al.: Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 1992;258:1795–1798.

    Article  PubMed  CAS  Google Scholar 

  60. Whiteside TL: Signaling defects in T lymphocytes of patients with malignancy. Cancer Immunol Immunother 1999;48:346–352.

    Article  PubMed  CAS  Google Scholar 

  61. Rodriguez PC, Zea AH, DeSalvo J, et al.: L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 2003; 171:1232–1239.

    PubMed  CAS  Google Scholar 

  62. Bansal V, Ochoa JB: Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care 2003;6:223–228.

    Article  PubMed  CAS  Google Scholar 

  63. Munder M, Eichmann K, Moran JM, et al.: Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 1999;163: 3771–3777.

    PubMed  CAS  Google Scholar 

  64. Kacha AK, Fallarino F, Markiewicz MA, Gajewski TF: Cutting edge: spontaneous rejection of poorly immuno-genic P1.HTR tumors by Stat6-definicient mice. J Immunol 2000;165:6024–6028.

    PubMed  CAS  Google Scholar 

  65. Ostrand-Rosenberg S, Grusby MJ, Clements VK: Cutting edge: STAT6-deficient mice have enhanced tumor immunity to primary and metastatic mammary carcinoma. J Immunol 2000;165:6015–6019.

    PubMed  CAS  Google Scholar 

  66. Wu CW, Chi CW, Lin EC, et al.: Serum arginase level in patients with gastric cancer. J Clin Gastroenterol 1994;18:84–85.

    Article  PubMed  CAS  Google Scholar 

  67. Selamnia M, Mayeur C, Robert V, Blachier F: Alpha-difluoromethy lornithine (DFMO) as a potent arginase activity inhibitor in human colon carcinoma cells. Biochem Pharmacol 1998;55:1241–1245.

    Article  PubMed  CAS  Google Scholar 

  68. Suer Gokmen S, Yoruk Y, et al.: Arginase and ornithine, as markers in human non-small cell lung carcinoma. Cancer Biochem Biophys 1999;17:125–131.

    PubMed  CAS  Google Scholar 

  69. Singh R, Pervin S, Karimi A, et al.: Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-L-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res 2000;60:3305–3312.

    PubMed  CAS  Google Scholar 

  70. Li H, Meininger CJ, Hawker JR, Jr., et al.: Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab 2001;280:E75–82.

    PubMed  CAS  Google Scholar 

  71. Kakuda DK, Sweet MJ, Mac Leod CL, et al.: CAT2-mediated L-arginine transport and nitric oxide production in activated macrophages. Biochem J 1999;340 (Pt 2): 549–553.

    Article  PubMed  CAS  Google Scholar 

  72. Nicholson B, Manner CK, Kleeman J, MacLeod CL: Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J Biol Chem 2001;276:15881–15885.

    Article  PubMed  CAS  Google Scholar 

  73. Daly JM, Reynolds J, Thom A, et al.: Immune and metabolic effects of arginine in the surgical patients. Ann Surg 1988;208:512–523.

    Article  PubMed  CAS  Google Scholar 

  74. Heys SD, Gough DB, Khan L, Eremin O: Nutritional pharmacology and malignant disease: a therapeutic modality in patients with cancer. Br J Surg 1996;83:608–619.

    Article  PubMed  CAS  Google Scholar 

  75. Thomsen LL, Miles DW: Role of nitric oxide in tumour progression: lessons from human tumours Cancer Metastasis Rev 1998;17:107–118.

    Article  PubMed  CAS  Google Scholar 

  76. Xu W, Liu LZ, Loizidou M, et al.: The role of nitric oxide in cancer. Cell Res 2002;12:311–320.

    Article  PubMed  Google Scholar 

  77. Vickers SM, MacMillan-Crow LA, Green M, et al.: Association of increased immunostatining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch Surg 1999;134:245–251.

    Article  PubMed  CAS  Google Scholar 

  78. Ekmekcioglu S, Ellerhorst J, Smid CM, et al.: Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 2000;6:4768–4775.

    PubMed  CAS  Google Scholar 

  79. Rajnakova A, Moochhala S, Goh PM, Ngoi S: Expression of nitric oxide synthase, cyclooxygenese, and p53 in different stages of human gastric cancer. Cancer Lett 2001;172:177–185.

    Article  PubMed  CAS  Google Scholar 

  80. Shi Q, Xiong Q, Wang B, et al.: Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis. Cancer Res 2000;60:2579–2583.

    PubMed  CAS  Google Scholar 

  81. Aaltoma SH, Lipponen PK, Kosma VM: Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer. Anticancer Res 2001;21: 3101–3106.

    PubMed  CAS  Google Scholar 

  82. Jadeski LC, Chakraborty C, Lala PK: Role of nitric oxide in tumour progression with special reference to a murine breast cancer model. Can J Physiol Pharmacol 2002;80:125–135.

    Article  PubMed  CAS  Google Scholar 

  83. Radi R, Cassina A, Hodara R: Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 2002;383:401–409.

    Article  PubMed  CAS  Google Scholar 

  84. Moncada S, Erusalimsky JD: Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 2002;3:214–220.

    Article  PubMed  CAS  Google Scholar 

  85. Stamler JS: Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994;78:931–936.

    Article  PubMed  CAS  Google Scholar 

  86. Cifone MG, Ulisse S, Santoni A: Natural killer cells and nitric oxide. Int Immunopharmacol 2001;1: 1513–1524.

    Article  PubMed  CAS  Google Scholar 

  87. Wei D, Richardson EL, Zhu K, et al.: Direct demonstration of negative regulation of tumor growth and metastasis by host-inducible nitric oxide synthase. Cancer Res 2003;63:3855–3859.

    PubMed  CAS  Google Scholar 

  88. Juang SH, Xie K, Xu L, et al.: Suppression of tumori-genicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum Gene Ther 1998;9:845–854.

    Article  PubMed  CAS  Google Scholar 

  89. Ellies LG, Fishman M, Hardison J, et al.: Mammary tumor latency is increased in mice lacking the inducible nitric oxide synthase. Int J Cancer 2003;106:1–7.

    Article  PubMed  CAS  Google Scholar 

  90. Kisley LR, Barrett BS, Bauer AK, et al.: Genetic ablation of inducible nitric oxide synthase decreases mouse lung tumorigenesis. Cancer Res 2002;62:6850–6856.

    PubMed  CAS  Google Scholar 

  91. Ahn B, Ohshima H: Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res 2001;61:8357–8360.

    PubMed  CAS  Google Scholar 

  92. Lander HM, Jacovina AT, Davis RJ, Tauras JM: Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem 1996;271: 19705–19709.

    Article  PubMed  CAS  Google Scholar 

  93. Bogdan C: Nitric oxide and the regulation of gene expression. Trends Cell Biol 2001;11:66–75.

    Article  PubMed  CAS  Google Scholar 

  94. Melino G, Bernassola F, Catani MV, et al.: Nitric oxide inhibits apoptosis via AP-1-dependent CD95L transactivation. Cancer Res 2000;60:2377–2383.

    PubMed  CAS  Google Scholar 

  95. Blesson S, Thiery J, Gaudin C, et al.: Analysis of the mechanisms of human cytotoxic T lymphocyte response inhibition by NO. Int Immunol 2002;14:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  96. Bingisser RM, Tilbrook PA, Holt PG, Kees UR: Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 1998;160:5729–5734.

    PubMed  CAS  Google Scholar 

  97. Koblish HK, Hunter CA, Wysocka M, et al.: Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effects. J Exp Med 1998;188:1603–1610.

    Article  PubMed  CAS  Google Scholar 

  98. Salvucci O, Carsana M, Bersani I, et al.: Antiapoptotic role of endogenous nitric oxide in human melanoma cells. Cancer Res 2001;61:318–326.

    PubMed  CAS  Google Scholar 

  99. Zhang XM, Xu Q: Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res 2001;11:559–567.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cham, C.M., Gajewski, T.F. Metabolic mechanisms of tumor resistance to T cell effector function. Immunol Res 31, 107–118 (2005). https://doi.org/10.1385/IR:31:2:107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:31:2:107

Key Words

Navigation