Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 14, 2006

A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis

  • Jennifer J. Schlezinger , Donghui Liu , Marganit Farago , David C. Seldin , Karine Belguise , Gail E. Sonenshein and David H. Sherr
From the journal Biological Chemistry

Abstract

The aryl hydrocarbon receptor (AhR) is an evolutionarily conserved transcription factor bound and activated by ubiquitous environmental pollutants. Historically, the AhR has been studied for its transcriptional regulation of genes encoding cytochrome P450 enzymes, which metabolize many of these chemicals into mutagenic and toxic intermediates. However, recent studies demonstrate that the AhR plays an important role in the biology of several cell types in the absence of environmental chemicals. Here, this paradigm shift is discussed in the context of a putative role for the AhR in mammary gland tumorigenesis. Data demonstrating high levels of constitutively active AhR in mammary tumors are summarized. Particular focus is placed on the likelihood that the AhR contributes to ongoing mammary tumor cell growth and on the possibility that the AhR inhibits apoptosis while promoting transition to an invasive, metastatic phenotype. A working model is proposed that may help explain the sometimes contradictory outcomes observed after AhR manipulation and that serves as a blueprint for the design of therapeutics which target the AhR in breast cancer. The theme that malignant cells reveal the functions for which the AhR has been evolutionarily conserved is presented throughout this discussion.

:

Corresponding author

References

Abdelrahim, M., Smith, R. 3rd, and Safe, S. (2003). Aryl hydrocarbon receptor gene silencing with small inhibitory RNA differentially modulates Ah-responsiveness in MCF-7 and HepG2 cancer cells. Mol. Pharmacol.63, 1373–1381.10.1124/mol.63.6.1373Search in Google Scholar

Allan, L.L., Schlezinger, J.J., Shansab, M., and Sherr, D.H. (2006). CYP1A1 in polycyclic aromatic hydrocarbon-induced B lymphocyte growth suppression. Biochem. Biophys. Res. Commun.342, 227–235.10.1016/j.bbrc.2006.01.131Search in Google Scholar

Allan, L.L. and Sherr, D.H. (2005). Constitutive activation and environmental chemical induction of the aryl hydrocarbon receptor/transcription factor in activated human B lymphocytes. Mol. Pharmacol.67, 1740–1750.10.1124/mol.104.009100Search in Google Scholar

Antoniou, A.C. and Easton, D.F. (2006). Risk prediction models for familial breast cancer. Future Oncol.2, 257–274.10.2217/14796694.2.2.257Search in Google Scholar

Bertazzi, A., Pesatori, A.C., Consonni, D., Tironi, A., Landi, M.T., and Zocchetti, C. (1993). Cancer incidence in a population accidentally exposed to 2,3,7,8-tetrachlorodibenzo-para-dioxin. Epidemiology4, 398–406.10.1097/00001648-199309000-00004Search in Google Scholar

Bradfield, C.A., Glover, E., and Poland, A. (1991). Purification and N-terminal amino acid sequence of the Ah receptor from the C57BL/6J mouse. Mol. Pharmacol.39, 13–19.Search in Google Scholar

Brennan, K.R. and Brown, A.M. (2004). Wnt proteins in mammary development and cancer. J. Mammary Gland Biol. Neoplasia9, 119–131.10.1023/B:JOMG.0000037157.94207.33Search in Google Scholar

Buell, P. (1973). Changing incidence of breast cancer in Japanese-American women. J. Natl. Cancer Inst.51, 1479–1493.10.1093/jnci/51.5.1479Search in Google Scholar

Burbach, K.M., Poland, A., and Bradfield, C.A. (1992). Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc. Natl. Acad. Sci. USA89, 8185–8189.10.1073/pnas.89.17.8185Search in Google Scholar

Calaf, G. and Russo, J. (1993). Transformation of human breast epithelial cells by chemical carcinogen. Carcinogenesis14, 483–492.10.1093/carcin/14.3.483Search in Google Scholar

Caruso, J.A., Laird, D.W., and Batist, G. (1999). Role of HSP90 in mediating cross-talk between the estrogen receptor and the Ah receptor signal transduction pathways. Biochem. Pharmacol.58, 1395–1403.10.1016/S0006-2952(99)00225-7Search in Google Scholar

Caruso, J.A., Mathieu, P.A., Joiakim, A., Leeson, B., Kessel, D., Sloane, B.F., and Reiners, J.J. Jr. (2004). Differential susceptibilities of murine hepatoma 1c1c7 and Tao cells to the lysosomal photosensitizer NPe6: influence of aryl hydrocarbon receptor on lysosomal fragility and protease contents. Mol. Pharmacol.65, 1016–1028.10.1124/mol.65.4.1016Search in Google Scholar

Caruso, J.A., Mathieu, P.A., Joiakim, A., Zhang, H., and Reiners, J.J. Jr. (2006). Aryl hydrocarbon receptor modulation of TNFα-induced apoptosis and lysosomal disruption in a hepatoma model that is caspase-8 independent. J. Biol. Chem.281, 10954–10967.10.1074/jbc.M508383200Search in Google Scholar

Carver, L.A., LaPres, J.J., Jain, S., Dunham, E.E., and Bradfield, C.A. (1998). Characterization of the Ah receptor-associated protein, ARA9. J. Biol. Chem.273, 33580–33587.10.1074/jbc.273.50.33580Search in Google Scholar

Chan, W., Yao, G., Gu, Y., and Bradfield, C. (1999). Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. J. Biol. Chem.274, 12115–12123.10.1074/jbc.274.17.12115Search in Google Scholar

Chang, C.Y. and Puga, A. (1998). Constitutive activation of the aromatic hydrocarbon receptor. Mol. Cell. Biol.18, 525–535.10.1128/MCB.18.1.525Search in Google Scholar

Chen, I. and Safe, S., (1996). Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem. Pharmacol.51, 1069–1076.10.1016/0006-2952(96)00060-3Search in Google Scholar

Christou, M., Savas, U., Schroeder, S., Shen, X., Thompson, T., Gould, M.N., and Jefcoate, C.R. (1995). Cytochromes CYP1A1 and CYP1B1 in the rat mammary gland: cell-specific expression and regulation by polycyclic aromatic hydrocarbons and hormones. Mol. Cell. Endocrinol.115, 41–50.10.1016/0303-7207(95)03668-WSearch in Google Scholar

Currier, N., Solomon, S., Demicco, E., Chang, D., Farago, M., Ying, H., Dominguez, I., Rogers, A., Sonenshein, G., Cardiff, R., Xiao, J., Sherr, D., and Seldin, D. (2005). Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors. Toxicol. Pathol.33, 726.10.1080/01926230500352226Search in Google Scholar PubMed

Davis, J.W. 2nd, Melendez, K., Salas, V.M., Lauer, F.T., and Burchiel, S.W. (2000). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits growth factor withdrawal-induced apoptosis in the human mammary epithelial cell line, MCF-10A. Carcinogenesis21, 881–886.10.1093/carcin/21.5.881Search in Google Scholar PubMed

Deb, T.B., Coticchia, C.M., and Dickson, R.B. (2004). Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells. J. Biol. Chem.279, 38903–38911.10.1074/jbc.M405314200Search in Google Scholar PubMed

Demicco, E.G., Kavanagh, K.T., Romieu-Mourez, R., Wang, X., Shin, S.R., Landesman-Bollag, E., Seldin, D.C., and Sonenshein, G.E. (2005). RelB/p52 NF-κB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IκBα expression and promote carcinogenesis of the mammary gland. Mol. Cell. Biol.25, 10136–10147.10.1128/MCB.25.22.10136-10147.2005Search in Google Scholar

DiAugustine, R. and Davis, D. (1993). A holistic approach to breast cancer. Environ. Health Perspect.101, 116–120.Search in Google Scholar

Duan, R., Porter, W., Samudio, I., Vyhlidal, C., Kladde, M., and Safe, S. (1999). Transcriptional activation of c-fos protooncogene by 17β-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol. Endocrinol.13, 1511–1521.10.1210/mend.13.9.0338Search in Google Scholar

Edwards, B.K., Brown, M.L., Wingo, P.A., Howe, H.L., Ward, E., Ries, L.A., Schrag, D., Jamison, P.M., Jemal, A., Wu, X.C., et al. (2005). Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J. Natl. Cancer Inst.97, 1407–1427.10.1093/jnci/dji289Search in Google Scholar

Elizondo, G., Fernandez-Salguero, P., Sheikh, M.S., Kim, G.Y., Fornace, A.J., Lee, K.S., and Gonzalez, F.J. (2000). Altered cell cycle control at the G2/M phases in aryl hydrocarbon receptor-null embryo fibroblast. Mol. Pharmacol.57, 1056–1063.Search in Google Scholar

Eltom, S.E., Larsen, M.C., and Jefcoate, C.R. (1998). Expression of CYP1B1 but not CYP1A1 by primary cultured human mammary stromal fibroblasts constitutively and in response to dioxin exposure: role of the Ah receptor. Carcinogenesis19, 1437–1444.10.1093/carcin/19.8.1437Search in Google Scholar

Ema, M., Sogawa, K., Watanabe, N., Chujoh, Y., Matsushita, N., Gotoh, O., Funae, Y., and Fujii-Kuriyama, Y. (1992). cDNA cloning and structure of mouse putative Ah receptor. Biochem. Biophys. Res. Commun.184, 246–253.10.1016/0006-291X(92)91185-SSearch in Google Scholar

Falk, F., Ricci, J., Wolff, M., Godbold, J., and Deckers, P. (1992). Pesticides and polychlorinated biphenyl residues in human breast lipids and their relation to breast cancer. Arch. Environ. Health47, 143–149.Search in Google Scholar

Fernandez-Salguero, P.M., Hilbert, D.M., Rudikoff, S., Ward, J.M., and Gonzalez, F.J. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol. Appl. Pharmacol.140, 173–179.10.1006/taap.1996.0210Search in Google Scholar

Freimann, S., Ben-Ami, I., Hirsh, L., Dantes, A., Halperin, R., and Amsterdam, A. (2004). Drug development for ovarian hyper-stimulation and anti-cancer treatment: blocking of gonadotropin signaling for epiregulin and amphiregulin biosynthesis. Biochem. Pharmacol.68, 989–996.10.1016/j.bcp.2004.05.027Search in Google Scholar

Fysh, J.M. and Okey, A.B. (1978). Aryl hydrocarbon (benzo[a]pyrene) hydroxylase development in rat mammary tissue. Biochem. Pharmacol.27, 2968–2972.10.1016/0006-2952(78)90220-4Search in Google Scholar

Ge, N.L. and Elferink, C.J. (1998). A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. J. Biol. Chem.273, 22708–22713.10.1074/jbc.273.35.22708Search in Google Scholar PubMed

Gonzalez, F.J. and Fernandez-Salguero, P. (1998). The aryl hydrocarbon receptor: studies using the AHR-null mice. Drug Metab. Dispos.26, 1194–1198.Search in Google Scholar

Gu, Y.Z., Hogenesch, J.B., and Bradfield, C.A. (2000). The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol.40, 519–561.10.1146/annurev.pharmtox.40.1.519Search in Google Scholar PubMed

Guo, J., Sartor, M., Karyala, S., Medvedovic, M., Kann, S., Puga, A., Ryan, P., and Tomlinson, C.R. (2004). Expression of genes in the TGF-β signaling pathway is significantly deregulated in smooth muscle cells from aorta of aryl hydrocarbon receptor knockout mice. Toxicol. Appl. Pharmacol.194, 79–89.10.1016/j.taap.2003.09.002Search in Google Scholar

Guo, S., Yang, S., Taylor, C., and Sonenshein, G.E. (2005). Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene. J. Nutr.135, 2978S–2986S.10.1093/jn/135.12.2978SSearch in Google Scholar

Hahn, M.E. (2002). Aryl hydrocarbon receptors: diversity and evolution. Chem. Biol. Interact.141, 131–160.10.1016/S0009-2797(02)00070-4Search in Google Scholar

Hankinson, O. (1983). Dominant and recessive aryl hydrocarbon hydroxylase-deficient mutants of mouse hepatoma line, Hepa-1, and assignment of recessive mutants to three complementation groups. Somat. Cell. Genet.9, 497–514.10.1007/BF01543050Search in Google Scholar

Hankinson, O. (1995). The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol.35, 307–340.10.1146/annurev.pa.35.040195.001515Search in Google Scholar

Hankinson, O. (2005). Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch. Biochem. Biophys.433, 379–386.10.1016/j.abb.2004.09.031Search in Google Scholar

Harris, J.R., Lippman, M.E., Veronesi, U., and Willett, W. (1992). Breast cancer. N. Engl. J. Med.327, 319–328.10.1056/NEJM199207303270505Search in Google Scholar

Hayashibara, T., Yamada, Y., Mori, N., Harasawa, H., Sugahara, K., Miyanishi, T., Kamihira, S., and Tomonaga, M. (2003). Possible involvement of aryl hydrocarbon receptor (AhR) in adult T-cell leukemia (ATL) leukemogenesis: constitutive activation of AhR in ATL. Biochem. Biophys. Res. Commun.300, 128–134.10.1016/S0006-291X(02)02793-6Search in Google Scholar

Heath-Pagliuso, S., Rogers, W.J., Tullis, K., Seidel, S.D., Cenijn, P.H., Brouwer, A., and Denison, M.S. (1998). Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry37, 11508–11515.10.1021/bi980087pSearch in Google Scholar PubMed

Heidel, S.M., MacWilliams, P.S., Baird, W.M., Dashwood, W.M., Buters, J.T., Gonzalez, F.J., Larsen, M.C., Czuprynski, C.J., and Jefcoate, C.R. (2000). Cytochrome P4501B1 mediates induction of bone marrow cytotoxicity and preleukemia cells in mice treated with 7,12-dimethylbenz[a]anthracene. Cancer Res.60, 3454–3460.Search in Google Scholar

Helbig, G., Christopherson, K.W. 2nd, Bhat-Nakshatri, P., Kumar, S., Kishimoto, H., Miller, K.D., Broxmeyer, H.E., and Nakshatri, H. (2003). NF-κB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem.278, 21631–21638.10.1074/jbc.M300609200Search in Google Scholar PubMed

Henry, E.C., Bemis, J.C., Henry, O., Kende, A.S., and Gasiewicz, T.A. (2006). A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo. Arch. Biochem. Biophys.450, 67–77.10.1016/j.abb.2006.02.008Search in Google Scholar

Hockings, J.K., Thorne, P.A., Kemp, M.Q., Morgan, S.S., Selmin, O., and Romagnolo, D.F. (2006). The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res.66, 2224–2232.10.1158/0008-5472.CAN-05-1619Search in Google Scholar

Holcomb, M. and Safe, S. (1994). Inhibition of 7,12-dimethylbenzanthracene-induced rat mammary tumor growth by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Cancer Lett.82, 43–47.10.1016/0304-3835(94)90144-9Search in Google Scholar

Huang, G. and Elferink, C.J. (2005). Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest. Mol. Pharmacol.67, 88–96.10.1124/mol.104.002410Search in Google Scholar PubMed

Huang, S., Li, Y., Chen, Y., Podsypanina, K., Chamorro, M., Olshen, A.B., Desai, K.V., Tann, A., Petersen, D., Green, J.E., and Varmus, H.E. (2005). Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice. Genome Biol.6, R84.10.1186/gb-2005-6-10-r84Search in Google Scholar PubMed PubMed Central

Huber, M.A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., Kraut, N., Beug, H., and Wirth, T. (2004). NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest.114, 569–581.10.1172/JCI200421358Search in Google Scholar

Hunter, D.J., Hankinson, S.E., Laden, F., Colditz, G.A., Manson, J.E., Willett, W.C., Speizer, F.E., and Wolff, M.S. (1997). Plasma organochlorine levels and the risk of breast cancer. N. Engl. J. Med.337, 1253–1258.10.1056/NEJM199710303371801Search in Google Scholar PubMed

Ishibe, N., Hankinson, S.E., Colditz, G.A., Spiegelman, D., Willett, W.C., Speizer, F.E., Kelsey, K.T., and Hunter, D.J. (1998). Cigarette smoking, cytochrome P450 1A1 polymorphisms, and breast cancer risk in the Nurses' Health Study. Cancer Res.58, 667–671.Search in Google Scholar

Ito, T., Tsukumo, S., Suzuki, N., Motohashi, H., Yamamoto, M., Fujii-Kuriyama, Y., Mimura, J., Lin, T.M., Peterson, R.E., Tohyama, C., and Nohara, K. (2004). A constitutively active arylhydrocarbon receptor induces growth inhibition of jurkat T cells through changes in the expression of genes related to apoptosis and cell cycle arrest. J. Biol. Chem.279, 25204–25210.10.1074/jbc.M402143200Search in Google Scholar PubMed

Jamerson, M.H., Johnson, M.D., Korsmeyer, S.J., Furth, P.A., and Dickson, R.B. (2004). Bax regulates c-Myc-induced mammary tumour apoptosis but not proliferation in MMTV-c-myc transgenic mice. Br. J. Cancer91, 1372–1379.10.1038/sj.bjc.6602137Search in Google Scholar PubMed PubMed Central

Jeffy, B.D., Chen, E.J., Gudas, J.M., and Romagnolo, D.F. (2000). Disruption of cell cycle kinetics by benzo[a]pyrene: inverse expression patterns of BRCA-1 and p53 in MCF-7 cells arrested in S and G2. Neoplasia2, 460–470.10.1038/sj.neo.7900104Search in Google Scholar PubMed PubMed Central

Jeffy, B.D., Chirnomas, R.B., and Romagnolo, D.F. (2002). Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ. Mol. Mutagen.39, 235–244.10.1002/em.10051Search in Google Scholar

Jeffy, B.D., Schultz, E.U., Selmin, O., Gudas, J.M., Bowden, G.T., and Romagnolo, D. (1999). Inhibition of BRCA-1 expression by benzo[a]pyrene and its diol epoxide. Mol. Carcinog.26, 100–118.10.1002/(SICI)1098-2744(199910)26:2<100::AID-MC5>3.0.CO;2-1Search in Google Scholar

Kang, H.J., Kim, H.J., Kim, S.K., Barouki, R., Cho, C.H., Khanna, K.K., Rosen, E.M., and Bae, I. (2006). BRCA1 modulates xenobiotic stress-inducible gene expression by interacting with ARNT in human breast cancer cells. J. Biol. Chem.281, 14654–14662.10.1074/jbc.M601613200Search in Google Scholar

Karyala, S., Guo, J., Sartor, M., Medvedovic, M., Kann, S., Puga, A., Ryan, P., and Tomlinson, C.R. (2004). Different global gene expression profiles in benzo[a]pyrene- and dioxin-treated vascular smooth muscle cells of AHR-knockout and wild-type mice. Cardiovasc. Toxicol.4, 47–74.10.1385/CT:4:1:47Search in Google Scholar

Kavanagh, K.T., Hafer, L.J., Kim, D.W., Mann, K.K., Sherr, D.H., Rogers, A.E., and Sonenshein, G.E. (2001). Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. J. Cell. Biochem.82, 387–398.10.1002/jcb.1164Search in Google Scholar

Kazlauskas, A., Poellinger, L., and Pongratz, I. (1999). Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. J. Biol. Chem.274, 13519–13524.10.1074/jbc.274.19.13519Search in Google Scholar

Kazlauskas, A., Poellinger, L., and Pongratz, I. (2000). The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor. J. Biol. Chem.275, 41317–41324.10.1074/jbc.M007765200Search in Google Scholar

Kim, D.W., Gazourian, L., Quadri, S.A., Romieu-Mourez, R., Sherr, D.H., and Sonenshein, G.E. (2000a). The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene19, 5498–5506.10.1038/sj.onc.1203945Search in Google Scholar

Kim, D.W., Sovak, M.A., Zanieski, G., Nonet, G., Romieu-Mourez, R., Lau, A.W., Hafer, L.J., Yaswen, P., Stampfer, M., Rogers, A.E., Russo, J., and Sonenshein, G.E. (2000b). Activation of NF-κB/Rel occurs early during neoplastic transformation of mammary cells. Carcinogenesis21, 871–879.10.1093/carcin/21.5.871Search in Google Scholar

Klopocki, E., Kristiansen, G., Wild, P.J., Klaman, I., Castanos-Velez, E., Singer, G., Stohr, R., Simon, R., Sauter, G., Leibiger, H., et al. (2004). Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int. J. Oncol.25, 641–649.10.3892/ijo.25.3.641Search in Google Scholar

Koliopanos, A., Kleeff, J., Xiao, Y., Safe, S., Zimmermann, A., Buchler, M.W., and Friess, H. (2002). Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer. Oncogene21, 6059–6070.10.1038/sj.onc.1205633Search in Google Scholar PubMed

Kolluri, S.K., Weiss, C., Koff, A., and Gottlicher, M. (1999). p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Gene Dev.13, 1742–1753.10.1101/gad.13.13.1742Search in Google Scholar PubMed PubMed Central

Komurasaki, T., Toyoda, H., Uchida, D., and Morimoto, S. (1997). Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene15, 2841–2848.10.1038/sj.onc.1201458Search in Google Scholar PubMed

Kumar, M.B. and Perdew, G.H. (1999). Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr.8, 273–286.Search in Google Scholar

Kumar, M.B., Tarpey, R.W., and Perdew, G.H. (1999). Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J. Biol. Chem.274, 22155–22164.Search in Google Scholar

Laden, F., Ishibe, N., Hankinson, S.E., Wolff, M.S., Gertig, D.M., Hunter, D.J., and Kelsey, K.T. (2002). Polychlorinated biphenyls, cytochrome P450 1A1, and breast cancer risk in the Nurses' Health Study. Cancer Epidemiol. Biomarkers Prev.11, 1560–1565.Search in Google Scholar

Landesman-Bollag, E., Romieu-Mourez, R., Song, D.H., Sonenshein, G.E., Cardiff, R.D., and Seldin, D.C. (2001). Protein kinase CK2 in mammary gland tumorigenesis. Oncogene20, 3247–3257.10.1038/sj.onc.1204411Search in Google Scholar PubMed

Larsen, M.C., Brake, P.B., Pollenz, R.S., and Jefcoate, C.R. (2004). Linked expression of Ah receptor, ARNT, CYP1A1, and CYP1B1 in rat mammary epithelia, in vitro, is each substantially elevated by specific extracellular matrix interactions that precede branching morphogenesis. Toxicol. Sci.82, 46–61.10.1093/toxsci/kfh242Search in Google Scholar PubMed

Lee, S.Y., Walsh, C.T., Ng, S.F., and Rogers, A.E. (1986). Toxicokinetics of 7,12-dimethylbenz[a]anthracene (DMBA) in rats fed high lard or control diets. J. Nutr. Growth Cancer3, 167–176.Search in Google Scholar

Levine-Fridman, A., Chen, L., and Elferink, C.J. (2004). Cytochrome P4501A1 promotes G1 phase cell cycle progression by controlling aryl hydrocarbon receptor activity. Mol. Pharmacol.65, 461–469.10.1124/mol.65.2.461Search in Google Scholar PubMed

Li, D., Wang, M., Dhingra, K., and Hittelman, W.N. (1996). Aromatic DNA adducts in adjacent tissues of breast cancer patients: clues to breast cancer etiology. Cancer Res.56, 287–293.Search in Google Scholar

Li, D., Zhang, W., Sahin, A.A., and Hittelman, W.N. (1999). DNA adducts in normal tissue adjacent to breast cancer: a review. Cancer Detect. Prev.23, 454–462.10.1046/j.1525-1500.1999.99059.xSearch in Google Scholar PubMed

Li, Y., Millikan, R.C., Bell, D.A., Cui, L., Tse, C.K., Newman, B., and Conway, K. (2005). Polychlorinated biphenyls, cytochrome P450 1A1 (CYP1A1) polymorphisms, and breast cancer risk among African American women and white women in North Carolina: a population-based case-control study. Breast Cancer Res.7, R12–18.Search in Google Scholar

Liehr, J.G. (2000). Is estradiol a genotoxic mutagenic carcinogen? Endocr. Rev.21, 40–54.Search in Google Scholar

Liu, C., Goshu, E., Wells, A., and Fan, C.M. (2003). Identification of the downstream targets of SIM1 and ARNT2, a pair of transcription factors essential for neuroendocrine cell differentiation. J. Biol. Chem.278, 44857–44867.10.1074/jbc.M304489200Search in Google Scholar PubMed

Lo, P.K., Mehrotra, J., D'Costa, A., Fackler, M.J., Garrett-Mayer, E., Argani, P., and Sukumar, S. (2006). Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer. Cancer Biol. Ther.5, 281–286.10.4161/cbt.5.3.2384Search in Google Scholar PubMed

Ma, Q. and Whitlock, J. (1996). The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Mol. Cell. Biol.16, 2144–2150.10.1128/MCB.16.5.2144Search in Google Scholar PubMed PubMed Central

Maecker, B., Sherr, D.H., Vonderheide, R.H., von Bergwelt-Baildon, M.S., Hirano, N., Anderson, K.S., Xia, Z., Butler, M.O., Wucherpfennig, K.W., O'Hara, C., et al. (2003). The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood102, 3287–3294.10.1182/blood-2003-05-1374Search in Google Scholar

Maecker, B., von Bergwelt-Baildon, M.S., Sherr, D.H., Nadler, L.M., and Schultze, J.L. (2005). Identification of a new HLA-A*0201-restricted cryptic epitope from CYP1B1. Int. J. Cancer115, 333–336.10.1002/ijc.20906Search in Google Scholar

Mahon, M. and Gasiewicz, T. (1995). Ah Receptor phosphorylation: localization of phosphorylation sites to the C-terminal half of the protein. Arch. Biochem. Biophys.318, 166–174.10.1006/abbi.1995.1217Search in Google Scholar

Maltepe, E., Schmidt, J.V., Baunoch, D., Bradfield, C.A., and Simon, M.C. (1997). Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature386, 403–407.10.1038/386403a0Search in Google Scholar

Mann, K.K., Matulka, R.A., Lawrence, B.P., Kerkvliet, N.I., and Sherr, D.H. (1999). The role of cytochrome P-450 enzymes in 7,12-dimethylbenz[a]anthracene-induced apoptosis. Toxicol. Appl. Pharmacol.161, 10–22.10.1006/taap.1999.8778Search in Google Scholar

Marlowe, J.L., Knudsen, E.S., Schwemberger, S., and Puga, A. (2004). The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S-phase specific gene expression. J. Biol. Chem.279, 29013–29022.10.1074/jbc.M404315200Search in Google Scholar

Marlowe, J.L. and Puga, A. (2005). Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J. Cell. Biochem.96, 1174–1184.10.1002/jcb.20656Search in Google Scholar

Matikainen, T., Perez, G.I., Jurisicova, A., Mann, K.K., Schlezinger, J.J., Ryu, H.-T., Sakai, T., Korsmeyer, S.J., Casper, R.F., Sherr, D.H., and Tilly, J.T. (2001). Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat. Genet.28, 1–6.10.1038/ng575Search in Google Scholar

Matikainen, T.M., Moriyama, T., Morita, Y., Perez, G.I., Korsmeyer, S.J., Sherr, D.H., and Tilly, J.L. (2002). Ligand activation of the aromatic hydrocarbon receptor transcription factor drives Bax-dependent apoptosis in developing fetal ovarian germ cells. Endocrinology143, 615–620.10.1210/endo.143.2.8624Search in Google Scholar

McDougal, A., Wilson, C., and Safe, S. (1997). Inhibition of 7,12-dimethylbenz[a]anthracene-induced rat mammary tumor growth by aryl hydrocarbon receptor agonists. Cancer Lett.120, 53–63.10.1016/S0304-3835(97)00299-1Search in Google Scholar

McDougal, A., Wormke, M., Calvin, J., and Safe, S. (2001). Tamoxifen-induced antitumorigenic/antiestrogenic action synergized by a selective aryl hydrocarbon receptor modulator. Cancer Res.61, 3902–3907.Search in Google Scholar

Medina, D. (1974). Mammary tumorigenesis in chemical carcinogen-treated mice. I. Incidence in Balb-c and C57BL/6 mice. J. Natl. Cancer Inst.53, 213–221.Search in Google Scholar

Meyer, B.K., Pray-Grant, M.G., Vanden Heuvel, J.P., and Perdew, G.H. (1998). Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell. Biol.18, 978–988.10.1128/MCB.18.2.978Search in Google Scholar

Morris, J.J. and Seifter, E. (1992). The role of aromatic hydrocarbons in the genesis of breast cancer. Med. Hypotheses38, 177–184.10.1016/0306-9877(92)90090-YSearch in Google Scholar

Mulero-Navarro, S., Pozo-Guisado, E., Perez-Mancera, P.A., Alvarez-Barrientos, A., Catalina-Fernandez, I., Hernandez-Nieto, E., Saenz-Santamaria, J., Martinez, N., Rojas, J.M., Sanchez-Garcia, I., and Fernandez-Salguero, P.M. (2005). Immortalized mouse mammary fibroblasts lacking dioxin receptor have impaired tumorigenicity in a subcutaneous mouse xenograph model. J. Biol. Chem.280, 28731–28741.10.1074/jbc.M504538200Search in Google Scholar PubMed

Murray, I.A., Reen, R.K., Leathery, N., Ramadoss, P., Bonati, L., Gonzalez, F.J., Peters, J.M., and Perdew, G.H. (2005). Evidence that ligand binding is a key determinant of Ah receptor-mediated transcriptional activity. Arch. Biochem. Biophys.442, 59–71.10.1016/j.abb.2005.07.014Search in Google Scholar PubMed

Murray, T.J., Yang, X., and Sherr, D.H. (2006). Growth of a human mammary tumor cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by downregulation of cyclins D3, E, and A. Breast Cancer Res.8, R17.10.1186/bcr1391Search in Google Scholar PubMed PubMed Central

Muscat, J.E., Britton, J.A., Djordjevic, M.V., Citron, M.L., Kemeny, M., Busch-Devereaux, E., Pittman, B., and Stellman, S.D. (2003). Adipose concentrations of organochlorine compounds and breast cancer recurrence in Long Island, New York. Cancer Epidemiol. Biomarkers Prev.12, 1474–1478.Search in Google Scholar

Nebert, D.W. and Gielen, J.E. (1972). Genetic regulation of aryl hydrocarbon hydroxylase induction in the mouse. Fed. Proc.31, 1315–1325.Search in Google Scholar

Negri, E., Bosetti, C., Fattore, E., and La Vecchia, C. (2003). Environmental exposure to polychlorinated biphenyls (PCBs) and breast cancer: a systematic review of the epidemiological evidence. Eur. J. Cancer Prev.12, 509–516.10.1097/00008469-200312000-00010Search in Google Scholar PubMed

Nguyen, T.A., Hoivik, D., Lee, J.E., and Safe, S. (1999). Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Arch. Biochem. Biophys.367, 250–257.10.1006/abbi.1999.1282Search in Google Scholar PubMed

Nicholson, B.E., Frierson, H.F., Conaway, M.R., Seraj, J.M., Harding, M.A., Hampton, G.M., and Theodorescu, D. (2004). Profiling the evolution of human metastatic bladder cancer. Cancer Res.64, 7813–7821.10.1158/0008-5472.CAN-04-0826Search in Google Scholar PubMed

Noel, A. and Foidart, J.M. (1998). The role of stroma in breast carcinoma growth in vivo. J. Mammary Gland Biol. Neoplasia3, 215–225.10.1023/A:1018703208453Search in Google Scholar

Oberg, M., Bergander, L., Hakansson, H., Rannug, U., and Rannug, A. (2005). Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci.85, 935–943.10.1093/toxsci/kfi154Search in Google Scholar PubMed

Palermo, C.M., Westlake, C.A., and Gasiewicz, T.A. (2005). Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry44, 5041–5052.10.1021/bi047433pSearch in Google Scholar

Papaconstantinou, A.D., Shanmugam, I., Shan, L., Schroeder, I.S., Qiu, C., Yu, M., and Snyderwine, E.G. (2006). Gene expression profiling in the mammary gland of rats treated with 7,12-dimethylbenz[a]anthracene. Int. J. Cancer118, 17–24.10.1002/ijc.21247Search in Google Scholar

Park, K.T., Mitchell, K.A., Huang, G., and Elferink, C.J. (2005). The aryl hydrocarbon receptor predisposes hepatocytes to Fas-mediated apoptosis. Mol. Pharmacol.67, 612–622.10.1124/mol.104.005223Search in Google Scholar

Park, S., Mazina, O., Kitagawa, A., Wong, P., and Matsumura, F. (2004). TCDD causes suppression of growth and differentiation of MCF10A, human mammary epithelial cells by interfering with their insulin receptor signaling through c-Src kinase and ERK activation. J. Biochem. Mol. Toxicol.18, 322–331.Search in Google Scholar

Patel, R.D., Kim, D.J., Peters, J.M., and Perdew, G.H. (2006). The aryl hydrocarbon receptor directly regulates expression of the potent mitogen epiregulin. Toxicol. Sci.89, 75–82.10.1093/toxsci/kfi344Search in Google Scholar

Pearce, S.T., Liu, H., Radhakrishnan, I., Abdelrahim, M., Safe, S., and Jordan, V.C. (2004). Interaction of the aryl hydrocarbon receptor ligand 6-methyl-1,3,8-trichlorodibenzofuran with estrogen receptor α. Cancer Res.64, 2889–2897.10.1158/0008-5472.CAN-03-1770Search in Google Scholar

Perdew, G. and Bradfield, C. (1996). Mapping the 90 kDa heat shock protein binding region of the Ah receptor. Biochem. Mol. Biol. Int.39, 589–593.10.1080/15216549600201651Search in Google Scholar

Peter Guengerich, F., Martin, M.V., McCormick, W.A., Nguyen, L.P., Glover, E., and Bradfield, C.A. (2004). Aryl hydrocarbon receptor response to indigoids in vitro and in vivo. Arch. Biochem. Biophys.423, 309–316.10.1016/j.abb.2004.01.002Search in Google Scholar

Petersen, O.W., Nielsen, H.L., Gudjonsson, T., Villadsen, R., Rank, F., Niebuhr, E., Bissell, M.J., and Ronnov-Jessen, L. (2003). Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol.162, 391–402.10.1016/S0002-9440(10)63834-5Search in Google Scholar

Phelan, D., Winter, G.M., Rogers, W.J., Lam, J.C., and Denison, M.S. (1998). Activation of the Ah receptor signal transduction pathway by bilirubin and biliverdin. Arch. Biochem. Biophys.357, 155–163.10.1006/abbi.1998.0814Search in Google Scholar

Poland, A., Glover, E., Robinson, J., and Nebert, D. (1974). Genetic expression of aryl hydrocarbon hydroxylase activity: induction of monooxygenase activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically ‘nonresponsive’ to other aromatic hydrocarbons. J. Biol. Chem.249, 5599–5606.10.1016/S0021-9258(20)79769-3Search in Google Scholar

Porter, W., Wang, F., Duan, R., Qin, C., Castro-Rivera, E., Kim, K., and Safe, S. (2001). Transcriptional activation of heat shock protein 27 gene expression by 17β-estradiol and modulation by antiestrogens and aryl hydrocarbon receptor agonists. J. Mol. Endocrinol.26, 31–42.10.1677/jme.0.0260031Search in Google Scholar

Powell-Coffman, J.A., Bradfield, C.A., and Wood, W.B. (1998). Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc. Natl. Acad. Sci. USA95, 2844–2849.10.1073/pnas.95.6.2844Search in Google Scholar

Puga, A., Barnes, S.J., Dalton, T.P., Chang, C., Knudsen, E.S., and Maier, M.A. (2000). Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J. Biol. Chem.275, 2943–2950.10.1074/jbc.275.4.2943Search in Google Scholar

Puga, A., Xia, Y., and Elferink, C. (2002). Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem. Biol. Interact.141, 117–130.10.1016/S0009-2797(02)00069-8Search in Google Scholar

Reen, R.K., Cadwallader, A., and Perdew, G.H. (2002). The subdomains of the transactivation domain of the aryl hydrocarbon receptor (AhR) inhibit AhR and estrogen receptor transcriptional activity. Arch. Biochem. Biophys.408, 93–102.10.1016/S0003-9861(02)00518-0Search in Google Scholar

Reiners, J.J. Jr., Clift, R., and Mathieu, P. (1999). Suppression of cell cycle progression by flavonoids: dependence on the aryl hydrocarbon receptor. Carcinogenesis20, 1561–1566.10.1093/carcin/20.8.1561Search in Google Scholar PubMed

Rizki, A. and Bissell, M.J. (2004). Homeostasis in the breast: it takes a village. Cancer Cell6, 1–2.Search in Google Scholar

Robles, R., Morita, Y., Mann, K.K., Perez, G.I., Yang, S., Matikainen, T., Sherr, D.H., and Tilly, J.L. (2000). The aryl hydrocarbon receptor, a basic helix-loop-helix transcription factor of the PAS gene family, is required for normal ovarian germ cell dynamics in the mouse. Endocrinology141, 450–453.10.1210/endo.141.1.7374Search in Google Scholar PubMed

Russo, J., Tay, L.K., Ciocca, D.R., and Russo, I.H. (1983). Molecular and cellular basis of the mammary gland susceptibility to carcinogenesis. Environ. Health Perspect.49, 185–199.10.1289/ehp.8349185Search in Google Scholar PubMed PubMed Central

Safe, S. and Krishan, V. (1995). Cellular and molecular biology of aryl hydrocarbon (Ah) receptor-mediated gene expression. Arch. Toxicol.17, 99–115.10.1007/978-3-642-79451-3_8Search in Google Scholar PubMed

Safe, S. and McDougal, A. (2002). Mechanism of action and development of selective aryl hydrocarbon receptor modulators for treatment of hormone-dependent cancers. Int. J. Oncol.20, 1123–1128.10.3892/ijo.20.6.1123Search in Google Scholar

Schrenk, D., Schmitz, H.J., Bohnenberger, S., Wagner, B., and Worner, W. (2004). Tumor promoters as inhibitors of apoptosis in rat hepatocytes. Toxicol. Lett.149, 43–50.10.1016/j.toxlet.2003.12.019Search in Google Scholar PubMed

Sellers, T.A., Schildkraut, J.M., Pankratz, V.S., Vierkant, R.A., Fredericksen, Z.S., Olson, J.E., Cunningham, J., Taylor, W., Liebow, M., McPherson, C., et al. (2005). Estrogen bioactivation, genetic polymorphisms, and ovarian cancer. Cancer Epidemiol. Biomarkers Prev.14, 2536–2543.10.1158/1055-9965.EPI-05-0142Search in Google Scholar PubMed

Shehin, S.E., Stephenson, R.O., and Greenlee, W.F. (2000). Transcriptional regulation of the human CYP1B1 gene. Evidence for involvement of an aryl hydrocarbon receptor response element in constitutive expression. J. Biol. Chem.275, 6770–6776.10.1074/jbc.275.10.6770Search in Google Scholar PubMed

Shin, R.R., Sanchez-Velar, N., Sherr, D., and Sonenshein, G. (2006). 7,12-Dimethylbenz[a]anthracene treatment of a c-rel mouse mammary tumor cell line induces epithelial to mesenchymal transition via activation of NF-κB. Cancer Res.66, 2570–2575.10.1158/0008-5472.CAN-05-3056Search in Google Scholar PubMed

Singh, S.S., Hord, N.G., and Perdew, G.H. (1996). Characterization of the activated form of the aryl hydrocarbon receptor in the nucleus of HeLa cells in the absence of exogenous ligand. Arch. Biochem. Biophys.329, 47–55.10.1006/abbi.1996.0190Search in Google Scholar PubMed

Sovak, M.A., Arsura, M., Zanieski, G., Kavanagh, K.T., and Sonenshein, G.E. (1999). The inhibitory effects of transforming growth factor β1 on breast cancer cell proliferation are mediated through regulation of aberrant nuclear factor-κB/Rel expression. Cell. Growth Differ.10, 537–544.Search in Google Scholar

Sovak, M.A., Bellas, R.E., Kim, D.W., Zanieski, G.J., Rogers, A.E., Traish, A.M., and Sonenshein, G.E. (1997). Aberrant nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest.100, 2952–2960.10.1172/JCI119848Search in Google Scholar PubMed PubMed Central

Spink, B.C., Hussain, M.M., Katz, B.H., Eisele, L., and Spink, D.C. (2003). Transient induction of cytochromes P450 1A1 and 1B1 in MCF-7 human breast cancer cells by indirubin. Biochem. Pharmacol.66, 2313–2321.10.1016/j.bcp.2003.08.019Search in Google Scholar PubMed

Stinchcombe, S., Buchmann, A., Bock, K.W., and Schwarz, M. (1995). Inhibition of apoptosis during 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated tumour promotion in rat liver. Carcinogenesis16, 1271–1275.10.1093/carcin/16.6.1271Search in Google Scholar PubMed

Swanson, H., Chan, W., and Bradfield, C. (1995). DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J. Biol. Chem.270, 26292–26302.10.1074/jbc.270.44.26292Search in Google Scholar PubMed

Thomsen, J., Wang, X., Hines, R., and Safe, S. (1994). Restoration of aryl hydrocarbon (Ah) responsiveness in MDA-MB-231 human breast cancer cells by transient expression of the estrogen receptor. Carcinogenesis15, 933–937.10.1093/carcin/15.5.933Search in Google Scholar PubMed

Tohkin, M., Fukuhara, M., Elizondo, G., Tomita, S., and Gonzalez, F.J. (2000). Aryl hydrocarbon receptor is required for p300-mediated induction of DNA synthesis by adenovirus E1A. Mol. Pharmacol.58, 845–851.10.1124/mol.58.4.845Search in Google Scholar

Tokizane, T., Shiina, H., Igawa, M., Enokida, H., Urakami, S., Kawakami, T., Ogishima, T., Okino, S.T., Li, L.C., Tanaka, Y., et al. (2005). Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin. Cancer Res.11, 5793–5801.10.1158/1078-0432.CCR-04-2545Search in Google Scholar

Trombino, A.F., Matulka, R.A., Yang, S., Hafer, L.J., Rogers, A.E., Tosselli, P., Kim, D., Sonenshein, G.E., Near, R.I., and Sherr, D.H. (2000). Expression of the aryl hydrocarbon receptor/transcription factor (AhR) and AhR-regulated CYP1 gene transcription in a rat model of mammary tumorigenesis. Breast Cancer Res. Ther.62, 117–131.10.1023/A:1006443104670Search in Google Scholar

Vaziri, C., Shneider, A., Sherr, D.H., and Faller, D.V. (1996). Expression of the aryl hydrocarbon receptor is regulated by serum and mitogenic growth factors in murine 3T3 fibroblasts. J. Biol. Chem.271, 25921.10.1074/jbc.271.42.25921Search in Google Scholar

Vincent-Salomon, A. and Thiery, J.P. (2003). Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res.5, 101–106.10.1186/bcr578Search in Google Scholar

Wang, F., Samudio, I., and Safe, S. (2001). Transcriptional activation of cathepsin D gene expression by 17β-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol. Cell. Endocrinol.172, 91–103.10.1016/S0303-7207(00)00379-8Search in Google Scholar

Wang, F., Wang, W., and Safe, S. (1999). Regulation of constitutive gene expression through interactions of Sp1 protein with the nuclear aryl hydrocarbon receptor complex. Biochemistry38, 11490–11500.10.1021/bi982578fSearch in Google Scholar

Wang, X., Thomsen, J.S., Santostefano, M., Rosengren, R., Safe, S., and Perdew, G.H. (1995). Comparative properties of the nuclear aryl hydrocarbon (Ah) receptor complex from several human cell lines. Eur. J. Pharmacol.293, 191–205.10.1016/0926-6917(95)00017-8Search in Google Scholar

Watanabe, J., Shimad, T., Gillam, E., Ikuta, T., Suemasu, K., Higashi, Y., Gotoh, O., and Kawajiri, K. (2000). Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics10, 25–33.10.1097/00008571-200002000-00004Search in Google Scholar PubMed

Wei, Y.D., Tepperman, K., Huang, M.Y., Sartor, M.A., and Puga, A. (2004). Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J. Biol. Chem.279, 4110–4119.10.1074/jbc.M310800200Search in Google Scholar PubMed

Wingo, P., Tong, T., and Bolden, S. (1995). Cancer Statistics, 1995. American Cancer Society Professional Education Publication 45, 8–30.10.3322/canjclin.45.1.8Search in Google Scholar

Wormke, M., Stoner, M., Saville, B., and Safe, S. (2000). Crosstalk between estrogen receptor α and the aryl hydrocarbon receptor in breast cancer cells involves unidirectional activation of proteasomes. FEBS Lett.478, 109–112.10.1016/S0014-5793(00)01830-5Search in Google Scholar

Wormke, M., Stoner, M., Saville, B., Walker, K., Abdelrahim, M., Burghardt, R., and Safe, S. (2003). The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes. Mol. Cell. Biol.23, 1843–1855.10.1128/MCB.23.6.1843-1855.2003Search in Google Scholar PubMed PubMed Central

Yang, X., Liu, D., Murray, T., Mitchell, G., Hestermann, D., Karchner, S., Merson, R., Hahn, M., and Sherr, D. (2005). The aryl hydrocarbon receptor constitutively represses c-myc transcription in human mammary tumor cells. Oncogene24, 7869.10.1038/sj.onc.1208938Search in Google Scholar PubMed

Published Online: 2006-09-14
Published in Print: 2006-09-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.145/html
Scroll to top button