Skip to main content
Log in

Pharmacokinetics and Metabolism of Mitoxantrone A Review

  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Mitoxantrone, a cytotoxic anthracenedione derivative, has given clinical evidence of beneficial activity in breast cancer, lymphoma and leukaemia. Several different mechanisms of action have been suggested to account for this. In addition to intercalation, biological effects such as electrostatic interactions with DNA, DNA-protein cross-links, lmmunosuppressive activities, inhibition of topoisomerase II, Prostaglandin biosynthesis and calcium release have been described.

Various methods of drug monitoring in biological fluids and tissues are available: the highest sensitivity has been achieved with high performance liquid chromatography with electrochemical detection, radioimmunoassay and enzyme linked immunosorbent assay. Early pharmacokinetic studies of mitoxantrone in experimental animals using radioactive material showed an extensive tissue distribution and a long terminal plasma half-life.

The best fit for the plasma concentration-time curve in humans is achieved in a 3-compartment model. All studies reported a short absorption half-life of between 4.1 and 10.7 minutes, with the distribution phase being between 0.3 and 3.1 hours. In contrast, the values of the terminal half-life are quite variable, ranging from 8.9 hours to 9 days. Differences might be attributed to assay sensitivity, number and weighting of data points beyond 24 hours and coadministration drugs. Many studies showed a very large volume of distribution with sequestration of mitoxantrone in a deep tissue compartment. In autopsy studies, relatively high tissue concentrations have been measured in liver, bone marrow, heart, lung, spleen and kidney.

Bile is the major route for the elimination of mitoxantrone, with lesser amounts excreted in the urine. Several metabolites have been separated, 2 of which were identified as the monocarboxylic and dicarboxylic acid derivatives.

Mitoxantrone is usually administered by rapid intravenous infusion at 3-weekly intervals; other regimens include continuous infusion, daily repeated doses or weekly administration. In peritoneal carcinosis, the pharmacological advantage of intraperitoneal administration is clear. The optimal regimen for different disease categories with respect to efficacy and side-effects remains to be determined in future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberts DS, Peng YM, Bowden GT, Dallon WS, Mackel C. Pharmacology of mitoxanirone: mode of action and pharmacokinetics. Invcstigational New Drugs 3: 101–107, 1985b

    CAS  Google Scholar 

  • Alberts DS, Peng YM, Bowden T, Mackel C, Dallon WS. Mechanism of action and pharmacokinetics of novamrone in intravenous and intraperiloncal therapy. In Coltman (Ed.) The current status of novantrone. pp. 15–21, John Wiley, New York. 1986

    Google Scholar 

  • Alberts DS, Peng YM, Bowden GT, Mackel C, Dalton WS. Mechanism of action and pharmacokinetics of novamrone in intravenous and intraperitoneal therapy. Advances in Cancer Chemotherapy 15-21, 1989

  • Alberts DS, Peng YM, Leigh S, Davis TP, Woodward DL. Disposition of mitoxantrone in patients. Cancer Treatment Reviews 10 (B): 23–27, 1983

    Article  PubMed  Google Scholar 

  • Alberts DS, Peng YM, Leigh S, Davis TP, Woodward DL. Disposition of mitoxantrone in cancer patients. Cancer Research 45: 1879–1884, 1985a

    PubMed  CAS  Google Scholar 

  • Alberts DS, Surwil EA, Peng YM, McCloskey T, Rivest R, et al. Phase I clinical and pharmacokinetic study of mitoxantrone given to patients by intraperitoneal administration. Cancer Research 48: 5874–5877, 1988

    PubMed  CAS  Google Scholar 

  • Alberts DS, Young L, Mason N, Salmon SE. In vitro evaluation of anticancer drugs against ovarian cancer at concentrations available by intraperitoneal administration. Seminars in Oncology 12 (Suppl. 4): 38–42, 1985c

    PubMed  CAS  Google Scholar 

  • Avramis V. Pharmacokinetics of dihydroxyanthracenedione (DHAD) and its metabolites in rats. Abstract. Pharmacologist 24: 241, 1982.

    Google Scholar 

  • Bachur NR. Anthracycline antibiotic pharmacology and metabolism: the inhibitory effect of 1,4-dihydroxy-5,8-bis[2-[(2-hydroxyethyl)amino]-ethyl]amino]-9,10-anthracenedione dihydrochloride on dividing and nondividing cells in vitro. Abstract. Proceedings of the American Association for Cancer Research 20: 12, 1979

    Google Scholar 

  • Basra J, Wolf CR, Brown JR, Patterson LH. Evidence for human liver mediated free-radical formation by doxorubicin and mitozantrone. Anticancer Drug Design 1: 45–52, 1985

    CAS  Google Scholar 

  • Batra VK, Morrison JA, Woodward DL, Siverd NS, Yacobi A. Pharmacokinetics of mitoxantrone in man and laboratory animals. Drug Metabolism and Disposition 17: 311–329, 1986

    CAS  Google Scholar 

  • Blanz J. C-Markierung von Mitoxantrone zum Nachweis des Medikaments und seiner Metabolite im Urin. Thesis, Universität Tübingen, 1989

  • Blanz J, Zeller KP. C-Markierung der Seitenketten von Mitoxantrone. Journal of Labelled Compounds and Radiopharmaceutics 27: 91–101, 1989

    Article  CAS  Google Scholar 

  • Blöchl-Daum B, Eichler HG, Rainer H, Jakesz R, Salzer H, et al. Escalating dose regimen of intraperitoneal mitoxantrone: phasel study of intraperitoneal mitoxantrone — clinical and pharmacokinetic evaluation. European Journal of Cancer and Clinical Oncology 24: 1133–1138, 1988

    Article  Google Scholar 

  • Bowden GT, Roberts RA, Alberts DS, Peng YM, Garcia D. Comparative molecular pharmacology in leukemia LI210 cells of the anthracene anticancer drugs mitoxantrone and bisantrene. Cancer Research 45: 4915–4920, 1985

    PubMed  CAS  Google Scholar 

  • Burns PC, Haugstad BN, Mossman CJ, North JA, Ingraham LM. Membrane lipid alterations: effect on cellular uptake of mitoxantrone. Lipids 23: 393–397, 1988

    Article  PubMed  CAS  Google Scholar 

  • Burns CP, Haugstad BN, North JA. Membrane transport of mitoxantrone by L1210 leukemia cells. Biochemical Pharmacology 36: 857–860, 1987

    Article  PubMed  CAS  Google Scholar 

  • Chen KX, Gresh N, Pullman B. A theoretical investigation on the sequence selective binding of mitoxantrone to doublestranded tetranucleotides. Nucleic Acids Research 14: 3799–3812, 1986

    Article  PubMed  CAS  Google Scholar 

  • Cheng CC, Zee-Cheng RKY, Narayanan VL, Ing RB, Pauli KD. The collaborative development of a new family of antineoplastic drugs. Trends in Pharmacologie Science 2: 223–224, 1981

    Article  CAS  Google Scholar 

  • Chiccarelli FS, Morrison JA, Cosulich DB, Perkinson NA, Ridge DN, et al. Identification of human urinary mitoxantrone metabolites. Cancer Research 46: 4858–4861, 1986

    PubMed  CAS  Google Scholar 

  • Chiccarelli FS, Morrison JA, Gautam SR. Biliary pharmacokinetics of mitoxantrone in the rat following different intravenous doses and characteristics of drug related material in the bile. Abstract. Federal Proceedings 43: 345, 1984

    Google Scholar 

  • Chlebowski RT, Tong M, Bulcavage L, Woodward DL. Mitoxantrone in hepatic dysfunction: factors influencing toxicily and response. Abstract. Proceedings of the American Society of Clinical Oncology 5: 46, 1986

    Google Scholar 

  • Choi KE, Sinkule JA, Hans DS, McGrath SC, Daly KM, et al. High-performance liquid Chromatographie assay for mitoxantrone in plasma using electrochemical detection. Journal of Chromatography 420: 81–88, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cohen LF, Glaubiger DL, Kann HE, Kohn KW. Protein associated DNA single strand breaks and cytotoxicity of dihydroxyanthracenedione (DHAD) in mouse LI210 leukemia cells. Abstract. Proceedings of the American Association for Cancer Research 21: 277, 1980

    Google Scholar 

  • Crespi MD, Ivanier SE, Genovcse J, Baldi A. Mitoxantrone affects lopoisomerase activities in human breast cancer cells. Biochemical and Biophysical Research Communications 136: 521–528, 1986

    Article  PubMed  CAS  Google Scholar 

  • Czejka MJ, Georgopoulos A. Mitoxantrone determination using high-performance liquid chromatography: improved sensitivity by loop-column injection for dual-dose pharmacokinetic studies. Journal of Chromatography 425: 429–434, 1988

    Article  PubMed  CAS  Google Scholar 

  • de Dycker RP, Timmermann J, Neumann RLA, Wever H, Schindler AE. Arterielle regionale Chemotherapie fortgeschrittener Mammakarzinome. Deutsche Medizinische Wochenschrift 113: 1229–1233, 1988

    Article  PubMed  Google Scholar 

  • Doroshow JH. Comparative cardiac oxygen radical production by anthracycline antibiotics, mitoxantrone, bisantrene. M-AMSA, and neocarzinostatin. Abstract. Clinical Research 31: 67A, 1983

    Google Scholar 

  • Dukart G, Barone JS. An overview of cardiac episodes following mitoxantrone administration. Cancer Treatment Symposia 3: 35–41, 1984

    Google Scholar 

  • Durr FE, Wallace RE, Citarella RV. Molecular and biochemical pharmacology of mitoxantrone. Cancer Treatment Reviews 10 (B): 3–11, 1983

    Article  PubMed  Google Scholar 

  • Durr FE. Biologie and biochemical effects of mitoxantrone. Seminars in Oncology 11 (Suppl. 1): 3–10, 1984a

    PubMed  CAS  Google Scholar 

  • Durr FE. Preclinical studies with mitoxantrone. In Smyth (Ed.) A comprehensive guide to the therapeutic use of novantrone (Pharmamanual). pp. 1–24. PharmaLibri. Chicago. Morristown (NJ). Tokyo. Zürich, Copenhagen. Göteborg. Sydney, 1984b

  • Ehninger G. In vitro and in vivo metabolism of mitoxantrone. In Ghione et al. (Eds) Advances in oncology. Vol. 3. Harvard Academic Publishers, London. New York. 1989

    Google Scholar 

  • Ehninger G, Aapro MS, Rainer H, Blochl-Daum B. Inlacavitary treatment with mitoxantrone. In Mouridsen & Arlin (Eds) The role of mitoxantrone in malignant disease (Pharmamanual), pp. 19–25, PharmaLibri. Chicago, 1987b

  • Ehninger G, Mjaaland I, Proksch B, Schiller E, Meyer P. Klinische Pharmakologie von Mitoxantron bei Patienten mit Mammakarzinom und Leukamien. Zeitschrift für Antimikrobielle Antineoplastische Chemotherapie 5: 67–70, 1987a

    Google Scholar 

  • Ehninger G, Proksch B, Hartmann F, Gärtner HV, Wilms K. Mitoxantrone metabolism in the isolated perfused rat liver. Cancer Chemotherapy and Pharmacology 12: 50–52, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ehninger G, Proksch B, Heinzel G, Schiller E, Weible KH, et al. The pharmacokinctics and metabolism of mitoxantrone in man. Invesligational New Drugs 3: 109–116, 1985b

    CAS  Google Scholar 

  • Ehninger G, Proksch B, Heinzel G, Woodward DL. Clinical pharmacology of mitoxanlrone. Cancer Treatment Reports 70: 1373–1378, 1986

    PubMed  CAS  Google Scholar 

  • Ehninger G, Proksch B, Schiller E. Detection and separation of mitoxantrone and its metabolites in plasma and urine by HPLC. Journal of Chromatography 342: 119–127, 1985a

    Article  PubMed  CAS  Google Scholar 

  • Fidler JM, Quinn DeJoy S, Smith FR, Gibbons JJ. Selective immunomodulatio by the antineoplastic agent mitoxantrone. Journal of Immunology 136: 2747–2754, 1986

    CAS  Google Scholar 

  • Fidler JM, Smith FR, Gibbons J. Mitoxantrone inhibits helper function and enhances suppressor activity. Agents and Actions 16: 607–608, 1985

    Google Scholar 

  • Flavell SU, Flavell DJ. Development of a sensitive monoclonal antibody-based-enzyme-linked immunosorbent assay (ELISA) for mitozantrone. Journal of Immunological Methods 115: 179–185, 1988

    Article  PubMed  CAS  Google Scholar 

  • Fox KR, Waring MJ, Brown JR, Neidle S. DNA sequence preferences for the anticancer drug miloxamrone and related anthraquinones revealed by DNase I fool-printing. FEBS Letters 202: 289–294, 1986

    Article  PubMed  CAS  Google Scholar 

  • Foye WO, Vajragupta OPA, Scngupla SK. DNA-binding specificity and RNA Polymerase inhibitor activity of bis (aminoalkyl) anthraqumones and bis (methyl-thio) vinylquinonc Jodides. Journal of Pharmaceutical Sciences 71: 253–257, 1982

    Article  PubMed  CAS  Google Scholar 

  • Frank P, Novak RF. Mitoxantrone and bisantrene inhibition of platelet aggregation and Prostaglandin in E2 production in vivo. Biochemical Pharmacology 34: 3609–3614, 1985

    Article  PubMed  CAS  Google Scholar 

  • Frank P, Novak RF. Effects of mitoxantrone and bisantrene on platelet aggregation and prostaglandin/thromboxane biosynthesis in vitro. Anticancer Research 6: 941–947, 1986

    PubMed  CAS  Google Scholar 

  • Hall C, Dougherty WJ, Lebish IJ, Brock PG, Man A. Warning against use of intrathecal mitoxantrone. Lancet 1: 734, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ho AD, Seither E, Ma DD, Prentice HG. Milozanlronc-induced toxicity and DNA strand breaks in leukaemic cells. British Journal of Haematology 65: 51–55, 1987

    Article  PubMed  CAS  Google Scholar 

  • Houpt ST, Baldwin RP. Application of electrochemical detection for the quantitation of 1.4-dihydroxy-5.8-bis-[2-(2-hydroxyelhyl)amino-elhylamino]-9.10-anthracenedione following liquid chromatography. Analytical letters 16: 1343–1354, 1983

    Article  CAS  Google Scholar 

  • Hulhoven R, Desager JP. HPLC determination of mitoxantrone in biological fluids: a sensitive and accurate method. Journal of High Resolution Chromatography and Chromatography Communications 6: 512–513, 1983

    Article  CAS  Google Scholar 

  • Hulhoven R, Dumont E, Harvengt C. Plasma kinetics of mitoxantrone in leukemic patients. Medical Oncology and Tumor Pharmacotherapy 1: 201–204, 1984

    PubMed  CAS  Google Scholar 

  • James V, Chiccarelli FS, Dougherty W, Hall C, Henderson B, et al. Preclinical toxicology studies on mitoxantrone and bisantrene. In Rozencweig et al. (Eds) New anticancer drugs: mitoxantrone and bisantrene. pp. 47–70, Raven Press Books. New York, 1983

    Google Scholar 

  • Johnson RK, Zee-Cheng RKY, Lee WW, Acton EM, Henry DH, et al. Experimental antilumour activity of aminoanthraquinones. Cancer Treatment Reports 63: 425–439, 1979

    PubMed  CAS  Google Scholar 

  • Kapuscinski J, Darzynkiewicz Z. Relationship between the pharmacological activit) of aniuumor drugs ametantronc and mitoxantrone (novantronc) and their ability to condense nucleic acids. Proceedings of the National Academy of Science 83: 6302–6306, 1986

    Article  CAS  Google Scholar 

  • Kapuscinski J, Darzynkiewicz Z, Traganos F, Melamcd RR. Interactions of a new antitumour agent, 1,4-dihydroxy-5,8-bis [2-[(2-hydroxyethyl)amino]-ethyl]amino-9,10-anthracenedionc with nucleic acids. Biochemical Pharmacology 30: 231–240, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kharash ED, Novak RF. Inhibition of adriamycin stimulated microsomal lipid peroxidation by mitoxantrone and ametantrone, two new anthracencdione anlineoplastic agents. Biochemical and Biophysical Research Communications 108: 1346–1352, 1982

    Article  Google Scholar 

  • Kharash ED, Novak RF. Mitoxantrone and ameiantronc inhibil hydropcroxide-dependent initiation and propagation reactions in fatty acid peroxidation. Journal of Biological Chemistry 260: 10645–10652, 1985

    Google Scholar 

  • Lakhani AK, Zuilable AG, Pollard CM, Milne A, Trelcaven J, et al. Paraplegia after intrathecal mitozantrone. Lancet 2: 1393, 1986

    Article  PubMed  CAS  Google Scholar 

  • Laporte JP, Godefroy W, Verny A, Gorin NC, Najman A, et al. Intrathecal mitozantrone. Lancet 2: 160, 1985

    Article  PubMed  CAS  Google Scholar 

  • Larson RA, Daly KM, Choi KE, Hans DS, Sinkule JA. A clinical and pharmacokinetic study of mitoxantrone in acute nonlymphocytic leukemia. Journal of Clinical Oncology 5: 391–397, 1487

    Google Scholar 

  • Lin KT, Rivard GE, Ledere J-M. High-performance liquid Chromatographie determination of mitoxantrone in plasma utilizing non-bonded silica gel for solid-phase isolation to reduce adsorpuve losses on glass during sample preparation. Journal of Chromatography 465: 75–86, 1989

    Article  PubMed  CAS  Google Scholar 

  • Lown JW, Hanstock CC. High field H-NMR analysis of the 1:1 intercalation complex of the antitumor agent mitoxantrone and the DNA duplex (d(CpGpCpG)]. Journal of Biomolecular Structure and Dynamics 2: 1097–1106, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lown JW, Hanstock CC, Bradley RD, Scraba DG. Interactions of the antitumor agents miloxamrone and bisantrene with deoxyribonucleic acids studied by electron microscopy. Molecular Pharmacology 25: 178–184, 1984

    PubMed  CAS  Google Scholar 

  • Lown JW, Morgan AR, Yen S, Wang Y, Wilson WD. Characteristics of the binding of the anticancer agents mitoxantrone and ametamrone and related structures to deoxyribonucleic acids. Biochemistry 24: 4028–4035, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lu K, Savaraj N, Loo LT. Pharmacological disposition of 1,4-dihydroxy-5,8-bis [2-[(2-hydroxyethyl)amino]cthyl]amino-9, 10-anthracenedione dihvdrochloride in the dog. Cancer Chemotherapy and Pharmacology 13: 63–66, 1984

    Article  PubMed  CAS  Google Scholar 

  • Macpherson JS, Smyth JF, Clements JA, Ramsay MW, Warnngton PS, et al. Pharmacokineties and metabolism of mitoxanlrone. British Journal of Cancer 50: 252–253, 1984

    Google Scholar 

  • Mimnaugh EG, Trush MA, Ginsberg E, Gram TE. Differential effects of anthracycline drugs on the rat heart and liver microsomal reduced niconnamidc adenine dinucleotide phosphate-dependent lipid peroxidation. Cancer Research 42: 3574–3582, 1982

    PubMed  CAS  Google Scholar 

  • Mulder PO, Sleijfer DT, Willemse PH, de Vries EG, Liges DR, et al. High-dose cyclophosphamide or melphalan with escalating doses of miloxamrone and autologous bone marrow transplantation for refractory solid lumors. Cancer Research 15: 4654–4658, 1989

    Google Scholar 

  • Murdock KC, Child RG, Fabio PF, Angier RB, Wallace RE, et al. Antitumour Agents. 1. 1.4-Bis-[(aminoalkyl)amino]-9.10-anlhracenediones. Journal of Medicinal Chemistry 22: 1024–1030, 1979

    Article  PubMed  CAS  Google Scholar 

  • Murdock KC, Wallace RE, While RJ, Durr FE. Discovery and preclinical development of novantrone. Advances in Cancer Chemotherapy. March 21–24: 3-13, 1985

  • Musch E, Mackes KG, Bode U, Peiss J, Werner A. Intrapleurale Applikation von Mitoxanlron zur Behandlung ausgedehnter Pleuraergusse bei metastasiertem Mamma-Ca. Praxis and Klinik der Pneumonologie 41: 752–753, 1987

    Google Scholar 

  • Nicolau G, Szucs-Myers V, McWilliams W, Morrison J, Lanzilolti A. Radioimmunoassay for muoxantrone, a new antitumor agenl. Investigational New Drugs 3: 51–56, 1985

    Article  PubMed  CAS  Google Scholar 

  • Novak RF, Kharash ED. Mitoxantrone: propensity for free radical formation and lipid peroxidation-implications for cardiotoxicity. Investigational New Drugs 3: 95–99, 1985

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma T, Arkin H, Holland JF. Effects of cell density on druginduced cell kill kinetics in vitro (inoculum effect). British Journal of Cancer 54: 415–421, 1986

    Article  PubMed  CAS  Google Scholar 

  • Ostroy F, Gams RA. An HPLC method for the quantitative determination of 1.4-dihydro.xy-5.8-bis-[2-[2-hydroxyethyl)amino]ethyl]amino-9.10-anthracencdione in serum. Journal of Liquid Chromatography 3: 637–644, 1980

    Article  CAS  Google Scholar 

  • Payet B, Arnoux PH, Catalin J, Cano JP. Direct determination of miloxamrone and its mono- and dicarboxylic metabolites in plasma and urine by high-performance liquid Chromatography. Journal of Chromatography 424: 337–345, 1988

    Article  PubMed  CAS  Google Scholar 

  • Peng YM, Ormberg D, Alberts DS, Davis TP. Improved highperformance liquid Chromatograph) of the new antineoplastic agents bisantrene and mitoxamrone. Journal of Chromatography 233: 235–247, 1982

    Article  PubMed  CAS  Google Scholar 

  • Peters F, Beijnen JH, Ten Bokkel Huinink WW. Mitoxantrone extravasation injury. Cancer Treatment Reports 71: 992–993, 1987

    PubMed  CAS  Google Scholar 

  • Reynolds DL, Slemson LA, Repta AJ. Clinical analysis for the antineoplastic agent l.4-dihydroxy-5,8.-bis[2-[(2-hydroxyethyl)amino)-ethyl]amino-9. 10-anthracenedione dihydrochloride in plasma. Journal of Chromatography 222: 225–240, 1981

    Article  PubMed  CAS  Google Scholar 

  • Richard B, Fabre G, Fabre I, Cano JP. Excretion and metabolism of mitoxantrone in rabbits. Cancer Research 49: 833–837, 1989

    PubMed  CAS  Google Scholar 

  • Roboz J, Paciucci PA, Silides D, Greaves J, Holland JF. Detection and quantification of mitoxantrone in human organs: a case report. Cancer Chemotherapy and Pharmacology 13: 67–68, 1984

    Article  PubMed  CAS  Google Scholar 

  • Roboz J, Richardson CL, Holland JF. Comparison of the interaction of antineoplastic aminoanthraquinones with DNA using competitive fluorescence polarization. Life Science 31: 25–30, 1982

    Article  CAS  Google Scholar 

  • Savaraj N, Lu K, Manuel V, Burgess M, Umsawasdi T, et al. Clinical kinetics of l.4-dihydroxy-5.8-bis-[2-hydroxyethyl)-aminojethyljaminol-9.10-anthracenedione. Clinical Pharmacology and Therapeutics 31: 312–316, 1982b

    Article  PubMed  CAS  Google Scholar 

  • Savaraj N, Lu K, Manuel V, Loo LT. Pharmacology of mitoxantrone in cancer patients. Cancer Chemotherapy and Pharmacology 8: 113–117, 1982a

    Article  PubMed  CAS  Google Scholar 

  • Savaraj N, Lu K, Valdivieso M, Burgess M, Umsawasdi T, et al. Clinical kinetics of l.4-dihydroxy-5.8-bis-[2-[(2-hydroxyethyl)amino]ethyl]-amino)-9,10-anthracenedione. Clinical Pharmacology and Therapeutics 31: 312–316, 1982c

    Article  PubMed  CAS  Google Scholar 

  • Schabel FM, Corbett TH, Griswold DP, Laster WR, Trader MW. Therapeutic activity of mitoxantrone and ametantrone against murine tumors. Cancer Treatment Reviews 10: 13–21, 1983

    Article  PubMed  Google Scholar 

  • Schell FC, Yap HY, Blumenschein G, Valsivieso M, Bodey G. Potential cardiotoxicity with mitoxantrone. Cancer Treatment Reports 66: 1641–1643, 1982

    PubMed  CAS  Google Scholar 

  • Schneider T, Kupiec-Weglinski JW, Towpik E, Wang BS, Durr FE, et al. Mitoxantrone — an immunosuppressive agent potentially useful in the organ transplantation. Abstract. Federal Proceedings 44: 1681, 1985

    Google Scholar 

  • Shenkenberg TD, Von Hoff DD. Mitoxantrone: a new anlicancer drug with significant clinical activity. Annals of Internal Medicine 105: 67–81, 1986

    PubMed  CAS  Google Scholar 

  • Shepherd FA, Evans WK, Blackstein ME, Fine S, Heathcote J, et al. Hepatic arterial infusion of mitoxantrone in the treatment of primary hepatocellular carcinoma. Journal of Clinical Oncology 5: 635–640, 1987

    PubMed  CAS  Google Scholar 

  • Siegal T, Melamed E, Sandbank U, Catane R. Early and delayed neurotoxicity of mitoxantrone and doxorubicin following subarachnoid injection. Journal of Neuro-Oncology 6: 135–140, 1988

    Article  PubMed  CAS  Google Scholar 

  • Smyth JF, Macpherson JS, Warrington PS, Leonard RCF, Wolf CR. The clinical pharmacology of mitoxantrone. Cancer Chemotherapy and Pharmacology 17: 149–152, 1986

    Article  PubMed  CAS  Google Scholar 

  • Stewart DJ, Green RM, Mikhael NZ, Montpetit V, Thibault M, et al. Human autopsy tissue concentrations of mitoxantrone. Cancer Treatment Reports 70: 1255–1261, 1986

    PubMed  CAS  Google Scholar 

  • Stewart JA, McCormack JJ, Krakoff IH. Clinical and clinical pharmacologic studies of mitoxantrone. Cancer Treatment Reports 66: 1327–1331, 1982

    PubMed  CAS  Google Scholar 

  • Stuart-Harris R, Pearson M, Smith IE. Cardiotoxicity associated with mitoxantrone. Lancet 2: 219, 1984

    Article  PubMed  CAS  Google Scholar 

  • Su RT. Effect of 1,4-dihydroxy-5.8-bis-[2-[(2-hydroxyethyl)amino-ethyl]amino-9.10-anthracenedione (dihydroxyamhraquinone) on the replication of simian virus 40 chromosome. Biochemical and Biophysical Research Communications 103: 249–255, 1981

    Article  PubMed  CAS  Google Scholar 

  • Taylor RF, Gaudio L. High-performance liquid chromatography of cancer chemotherapeutic agents: bis(substituted aminoalkylamino)anthraquinones. Journal of Chromatography 187: 212–217, 1980

    Article  PubMed  CAS  Google Scholar 

  • Tewey KM, Chen GL, Nelson EM, Liu LF. Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. Journal of Biological Chemistry 259: 9182–9187, 1984

    PubMed  CAS  Google Scholar 

  • Tonn JC, Ehninger G, Schoñmayr R, Braun B. Brain tissue concentrations of mitoxantrone in the rat brain after iv and ia administration. Journal of Chemotherapy 1: 621–622, 1989

    Google Scholar 

  • Unverferth DV, Bashore TM, Magorien RD, Fetters JK, Neidhart JA. Histologie and functional characteristics of human heart after mitoxantrone therapy. Cancer Treatment Symposia 3: 47–53, 1984

    Google Scholar 

  • Van Belle SJP, de Planque MM, Smith IE, von Oosterom AT, Schoemaker TJ, et al. Pharmacokinetics of mitoxantrone in humans following single-agent infusion or intra-arterial injection therapy or combined-agent infusion therapy. Cancer Chemotherapy and Pharmacology 18: 27–32, 1986

    Article  PubMed  Google Scholar 

  • Van Belle SJP, Schoemaker TJ, Verwey SL, Paalman ACA, McVie JG. Ion-paired high-performance liquid Chromatographie determination of mitoxantrone in physiological fluids. Journal of Chromatography 337: 73–80, 1985

    Article  PubMed  Google Scholar 

  • Wallace RE, Lindh D, Durr FE. Development of resistance and characteristics of a human colon carcinoma sublinc resistant to mitoxantrone in vitro. Cancer Investigation 5: 417–428, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wang BS, Lumanglas AL, Silva J, Ruszala-Mallon VM, Durr FE. Inhibition of the induction of alloreactivity with mitoxantrone. International Journal of Immunopharmacology 8: 967–973, 1986

    Article  PubMed  CAS  Google Scholar 

  • Wang BS, Murdock KC, Lumanglas AL, Damiani M, Silva J, et al. Relationship of chemical structures of anthraquinones with their effects on the suppression of immune responses. International Journal of Immunopharmacology 9: 733–739, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wolf CR, Macpherson JS, Smyth JF. Evidence for the metabolism of mitoxantrone by microsomal glutathione transferases and 3-methylcholanthrene-inducible glucuronosyl transferases. Biochemical Pharmacology 35: 1577–1581, 1986

    Article  PubMed  CAS  Google Scholar 

  • Zee-Chung RKY, Cheng CC. Structure-activity relationship study of anthraquinones: 1.4-dihydroxy-5,8-bis-[2-[(hydroxyethoxy)-ethyl]amin-9.10-anthracenedione, an analog of an established antineoplastic agent. Journal of Pharmaceutical Sciences 71: 708–709, 1982

    Article  Google Scholar 

  • Zee-Chung RKY, Cheng CC. Anthraquinone anticanccr agents. Drugs of the Future 8: 229–249, 1983

    Google Scholar 

  • Zuitable AG, Maitland J, Nandi A, Clink HM, Powles RL. Intrathecal mitozantrone for resistant leukaemia. Lancet 2: 1060–1061, 1985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehninger, G., Schuler, U., Proksch, B. et al. Pharmacokinetics and Metabolism of Mitoxantrone A Review. Clin Pharmacokinet 18, 365–380 (1990). https://doi.org/10.2165/00003088-199018050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199018050-00003

Keywords

Navigation