Skip to main content
Log in

Pharmacokinetic Interactions of Antimalarial Agents

  • Review Article
  • Drug Interactions
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Combination of antimalarial agents has been introduced as a response to widespread drug resistance. The higher number of mutations required to express complete resistance against combinations may retard the further development of resistance. Combination of drugs, especially with the artemisinin drugs, may also offer complete and rapid eradication of the parasite load in symptomatic patients and thus reduce the chance of survival of resistant strains.

The advantages of combination therapy should be balanced against the increased chance of drug interactions. During the last decade, much of the pharmacokinetics and metabolic pathways of antimalarial drugs have been elucidated, including the role of the cytochrome P450 (CYP) enzyme complex. Change in protein binding is not a significant cause of interactions between antimalarial agents. CYP3A4 and CYP2C19 are frequently involved in the metabolism of antimalarial agents. Quinidine is a potent inhibitor of CYP2D6, but it appears that this enzyme does not mediate the metabolism of any other antimalarial agent. The new combinations proguanil-atovaquone and chlorproguanil-dapsone do not show significant interactions.

CYP2B6 and CYP3A4 are involved in the metabolism of artemisinin and derivatives, but further studies may reveal involvement of more enzymes. Artemisinin may induce CYP2C19. Several artemisinin drugs suffer from autoinduction of the first-pass effect, resulting in a decline of bioavailability after repeated doses. The mechanism of this effect is not yet clear, but induction by other agents cannot be excluded. The combination of artemisinin drugs with mefloquine and the fixed combination artemether-lumefantrine have been studied widely, and no significant drug interactions have been found. The artemisinin drugs will be used at an increasing rate, particularly in combination with other agents. Although clinical studies have so far not shown any significant interactions, drug interactions should be given appropriate attention when other combinations are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. White NJ, Nosten F, Looareesuwan S, et al. Averting a malaria disaster. Lancet 1999; 353(9168): 1965–7

    Article  PubMed  CAS  Google Scholar 

  2. White NJ. Antimalarial drug resistance and combination chemotherapy. Philos Trans R Soc Lond B Biol Sci 1999; 354: 739–49

    Article  PubMed  CAS  Google Scholar 

  3. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38(1): 41–57

    Article  PubMed  CAS  Google Scholar 

  4. Flockhart DA, Oesterheld JR. Cytochrome P450-mediated drug interactions. Child Adolesc Psychiatr Clin N Am 2000; 9(1): 43–76

    PubMed  CAS  Google Scholar 

  5. ter Kuile FO, White NJ, Holloway P, et al. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp Parasitol 1993; 76(1): 85–95

    Article  PubMed  Google Scholar 

  6. de Vries PJ, Bich NN, Van TH, et al. Combinations of artemisinin and quinine for uncomplicated falciparum malaria: efficacy and pharmacodynamics. Antimicrob Agents Chemother 2000; 44(5): 1302–8

    Article  PubMed  Google Scholar 

  7. Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin Pharmacokinet 1996; 30(4): 263–99

    Article  PubMed  CAS  Google Scholar 

  8. Salako LA, Sowunmi A. Disposition of quinine in plasma, red blood cells and saliva after oral and intravenous administration to healthy adult Africans. Eur J Clin Pharmacol 1992; 42(2): 171–4

    Article  PubMed  CAS  Google Scholar 

  9. Paintaud G, Alvan G, Ericsson O. The reproducibility of quinine bioavailability. Br J Clin Pharmacol 1993; 35(3): 305–7

    Article  PubMed  CAS  Google Scholar 

  10. Supanaranond W, Davis TM, Pukrittayakamee S, et al. Disposition of oral quinine in acute falciparum malaria. Eur J Clin Pharmacol 1991; 40(1): 49–52

    Article  PubMed  CAS  Google Scholar 

  11. Wanwimolruk S, Chalcroft S, Coville PF, et al. Pharmacokinetics of quinine in young and elderly subjects. Trans R Soc Trop MedHyg 1991;85(6): 714–7

    Article  CAS  Google Scholar 

  12. Dyer JR, Davis TM, Giele C, et al. The pharmacokinetics and pharmacodynamics of quinine in the diabetic and non-diabetic elderly. Br J Clin Pharmacol 1994; 38(3): 205–12

    Article  PubMed  CAS  Google Scholar 

  13. Silamut K, Molunto P, Ho M, et al. Alpha 1-acid glycoprotein (orosomucoid) and plasma protein binding of quinine in falciparum malaria. Br J Clin Pharmacol 1991; 32(3): 311–5

    Article  PubMed  CAS  Google Scholar 

  14. Wanwimolruk S, Denton JR. Plasma protein binding of quinine: binding to human serum albumin, alpha-1-acid glycoprotein and plasma from patients with malaria. J Pharm Pharmacol 1992; 44(10): 806–11

    Article  PubMed  CAS  Google Scholar 

  15. Pussard E, Barennes H, Daouda H, et al. Quinine disposition in globally malnourished children with cerebral malaria. Clin Pharmacol Ther 1999; 65(5): 500–10

    Article  PubMed  CAS  Google Scholar 

  16. Treluyer JM, Roux A, Mugnier C, et al. Metabolism of quinine in children with global malnutrition. Pediatr Res 1996; 40(4): 558–63

    Article  PubMed  CAS  Google Scholar 

  17. Zhao XJ, Yokoyama H, Chiba K, et al. Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther 1996; 279(3): 1327–34

    PubMed  CAS  Google Scholar 

  18. Ho PC, Chalcroft SC, Coville PF, et al. Grapefruit juice has no effect on quinine pharmacokinetics. Eur J Clin Pharmacol 1999; 55(5): 393–8

    Article  PubMed  CAS  Google Scholar 

  19. Wanwimolruk S, Wong SM, Zhang H, et al. Metabolism of quinine in man: identification of a major metabolite, and effects of smoking and rifampicin pretreatment. J Pharm Pharmacol 1995; 47(11): 957–63

    Article  PubMed  CAS  Google Scholar 

  20. Babalola CP, Bolaji OO, Ogunbona FA, et al. Phannacokinetics of quinine in African patients with acute falciparum malaria. Pharm World Sci 1998; 20(3): 118–22

    Article  PubMed  CAS  Google Scholar 

  21. Pukrittayakamee S, Looareesuwan S, Keeratithakul D, et al. A study of the factors affecting the metabolic clearance of quinine in malaria. Eur J Clin Pharmacol 1997; 52(6): 487–93

    Article  PubMed  CAS  Google Scholar 

  22. Auprayoon P, Sukontason K, Na-Bangchang K, et al. Pharmacokinetics of quinine in chronic liver disease. Br J Clin Pharmacol 1995; 40(5): 494–7

    Article  PubMed  CAS  Google Scholar 

  23. Karbwang J, Thanavibul A, Molunto P, et al. The pharmacokinetics of quinine in patients with hepatitis. Br J Clin Pharmacol 1993; 35(4): 444–6

    Article  PubMed  CAS  Google Scholar 

  24. Rimchala P, Karbwang J, Sukontason K, et al. Pharmacokinetics of quinine in patients with chronic renal failure. Eur J Clin Pharmacol 1996; 49(6): 497–501

    Article  PubMed  CAS  Google Scholar 

  25. Muralidharan G, Hawes EM, McKay G, et al. Quinidine but not quinine inhibits in man the oxidative metabolic routes of methoxyphenamine which involve debrisoquine 4-hydroxyl-ase. Eur J Clin Pharmacol 1991; 41(5): 471–4

    Article  PubMed  CAS  Google Scholar 

  26. Amabeoku GJ, Chikuni O, Akino C, et al. Pharmacokinetic interaction of single doses of quinine and carbamazepine, phenobarbitone and phenytoin in healthy volunteers. East Afr Med J 1993;70(2): 90–3

    PubMed  CAS  Google Scholar 

  27. Karbwang J, Davis TM, Looareesuwan S, et al. A comparison of the pharmacokinetic and pharmacodynamic properties of quinine and quinidine in healthy Thai males. Br J Clin Pharmacol 1993; 35(3): 265–71

    PubMed  CAS  Google Scholar 

  28. Min DI, Ku YM, Geraets DR, et al. Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers. J Clin Pharmacol 1996; 36(5): 469–76

    PubMed  CAS  Google Scholar 

  29. Ching MS, Blake CL, Ghabrial H, et al. Potent inhibition of yeast-expressed CYP2D6 by dihydroquinidine, quinidine, and its metabolites. Biochem Pharmacol 1995; 50(6): 833–7

    Article  PubMed  CAS  Google Scholar 

  30. Nielsen F, Rosholm JU, Brosen K. Lack of relationship between quinidine pharmacokinetics and the sparteine oxidation polymorphism. Eur J Clin Pharmacol 1995; 48(6): 501–4

    Article  PubMed  CAS  Google Scholar 

  31. White NJ. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother 1997; 41(7): 1413–22

    PubMed  CAS  Google Scholar 

  32. Weidekamm E, Rusing G, Caplain H, et al. Lack of bioequivalence of a generic mefloquine tablet with the standard product. Eur J Clin Pharmacol 1998; 54(8): 615–9

    Article  PubMed  CAS  Google Scholar 

  33. Na Bangchang K, Karbwang J, Palacios PAC, et al. Pharmacokinetics and bioequivalence evaluation of three commercial tablet formulations of mefloquine when given in combination with dihydroartemisinin in patients with acute uncomplicated falciparum malaria. Eur J Clin Pharmacol 2000; 55: 743–8

    Article  PubMed  CAS  Google Scholar 

  34. Price R, Simpson JA, Teja-Isavatharm P, et al. Pharmacokinetics of mefloquine combined with artesunate in children with acute falciparum malaria. Antimicrob Agents Chemother 1999; 43(2): 341–6

    PubMed  CAS  Google Scholar 

  35. Crevoisier C, Handschin J, Barre J, et al. Food increases the bioavailability of mefloquine. Eur J Clin Pharmacol 1997; 53(2): 135–9

    Article  PubMed  CAS  Google Scholar 

  36. Boudreau EF, Fleckenstein L, Pang LW, et al. Mefloquine kinetics in cured and recrudescent patients with acute falciparum malaria and in healthy volunteers. Clin Pharmacol Ther 1990; 48(4): 399–409

    Article  PubMed  CAS  Google Scholar 

  37. Karbwang J, Na Bangchang K. Clinical application of mefloquine pharmacokinetics in the treatment of P. falciparum. malaria. Fundam Clin Pharmacol 1994; 8(6): 491–502

    Article  PubMed  CAS  Google Scholar 

  38. Na Bangchang K, Karbwang J, Back DJ. Mefloquine metabolism by human liver microsomes. Effect of other antimalarial drugs. Biochem Pharmacol 1992; 43(9): 1957–61

    Article  Google Scholar 

  39. Bourahla A, Martin C, Gimenez F, et al. Stereoselective pharmacokinetics of mefloquine in young children. Eur J Clin Pharmacol 1996; 50(3): 241–4

    Article  PubMed  CAS  Google Scholar 

  40. Hellgren U, Berggren-Palme I, Bergqvist Y, et al. Enantioselective pharmacokinetics of mefloquine during long-term intake of the prophylactic dose. Br J Clin Pharmacol 1997; 44(2): 119–24

    Article  PubMed  CAS  Google Scholar 

  41. Looareesuwan S, White NJ, Warrell DA, et al. Studies of mefloquine bioavailability and kinetics using a stable isotope technique: a comparison of Thai patients with falciparum malaria and healthy Caucasian volunteers. Br J Clin Pharmacol 1987; 24(1): 37–42

    Article  PubMed  CAS  Google Scholar 

  42. Coleman MD, Fleckenstein L, Heiffer MH. Primaquine disposition in the isolated perfused rat liver: effect of mefloquine induced bile flow reduction. Biopharm Drug Dispos 1989; 10(2): 153–64

    Article  PubMed  CAS  Google Scholar 

  43. Leo KU, Wesche DL, Marino MT, et al. Mefloquine effect on disposition of halofantrine in the isolated perfused rat liver. J Pharm Pharmacol 1996; 48(7): 723–8

    Article  PubMed  CAS  Google Scholar 

  44. Karbwang J, Na Bangchang K. Clinical pharmacokinetics of halofantrine. Clin Pharmacokinet 1994; 27(2): 104–19

    Article  PubMed  CAS  Google Scholar 

  45. Milton KA, Edwards G, Ward SA, et al. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacol 1989; 28(1): 71–7

    Article  PubMed  CAS  Google Scholar 

  46. ter Kuile FO, Dolan G, Nosten F, et al. Halofantrine versus mefloquine in treatment of multidrug-resistant falciparum malaria. Lancet 1993; 341(8852): 1044–9

    Article  PubMed  Google Scholar 

  47. Nosten F, Ter KF, Luxemburger C, et al. Cardiac effects of antimalarial treatment with halofantrine. Lancet 1993; 341(8852): 1054–6

    Article  PubMed  CAS  Google Scholar 

  48. Karbwang J, Milton KA, Na Bangchang K, et al. Pharmacokinetics of halofantrine in Thai patients with acute uncomplicated falciparum malaria. Br J Clin Pharmacol 1991; 31(4): 484–7

    Article  PubMed  CAS  Google Scholar 

  49. Khoo SM, Porter JH, Edwards GA, et al. Metabolism of halofantrine to its equipotent metabolite, desbutylhalofantrine, is decreased when orally administered with ketoconazole. J Pharm Sci 1998; 87(12): 1538–41

    Article  PubMed  CAS  Google Scholar 

  50. Baune B, Flinois JP, Furlan V, et al. Halofantrine metabolism in microsomes in man: major role of CYP 3 A4 and CYP 3 A5. J Pharm Pharmacol 1999; 51(4): 419–26

    Article  PubMed  CAS  Google Scholar 

  51. Karbwang J, Na Bangchang K, Bunnag D, et al. Cardiac effect of halofantrine [letter]. Lancet 1993; 342: 501

    Article  PubMed  CAS  Google Scholar 

  52. Krishna S, ter Kuile FO, Supanaranond W, et al. Pharmacokinetics, efficacy and toxicity of parenteral halofantrine in uncomplicated malaria. Br J Clin Pharmacol 1993; 36: 585–91

    Article  PubMed  CAS  Google Scholar 

  53. Lefevre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet™). Clin Drug Invest 1999; 18(6): 467–80

    Article  CAS  Google Scholar 

  54. White NJ, van Vugt M, Ezzet F. Clinical pharmacokinetics and pharmacodynamics and pharmacodynamics of artemetherlumefantrine. Clin Pharmacokinet 1999; 37(2): 105–25

    Article  PubMed  CAS  Google Scholar 

  55. Ezzet F, Mull R, Karbwang J. Population pharmacokinetics and therapeutic response of CGP 56697 (artemether + benflumetol) in malaria patients. Br J Clin Pharmacol 1998; 46(6): 553–61

    Article  PubMed  CAS  Google Scholar 

  56. Ezzet F, van Vugt M, Nosten F, et al. The pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob Agents Chemother 2000 Mar; 44(3): 697–704

    Article  PubMed  CAS  Google Scholar 

  57. Colussi D, Parisot C, Legay F, et al. Binding of artemether and lumefantrine to plasma proteins and erythrocytes. Eur J Pharm Sci 1999; 9(1): 9–16

    Article  PubMed  CAS  Google Scholar 

  58. Lefevre G, Bindschedler M, Ezzet F, et al. Pharmacokinetic interaction trial between co-artemether and mefloquine. Eur J Pharm Sci 2000; 10(2): 141–51

    Article  PubMed  CAS  Google Scholar 

  59. White NJ, Waller D, Crawley J, et al. Comparison of artemether and chloroquine for severe malaria in Gambian children. Lancet 1992; 339(8789): 317–21

    Article  PubMed  CAS  Google Scholar 

  60. Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine: focus on recent advancements. Clin Pharmacokinet 1996; 31(4): 257–74

    Article  PubMed  CAS  Google Scholar 

  61. de Vries PJ, Oosterhuis B, Van BC. Single-dose pharmacokinetics of chloroquine and its main metabolite in healthy volunteers. Drug Invest 1994; 8(3): 143–9

    Article  Google Scholar 

  62. Wetsteyn JC, De VP, Oosterhuis B, Van BC. The pharmacokinetics of three multiple dose regimens of chloroquine: implications for malaria chemoprophylaxis. Br J Clin Pharmacol 1995; 39(6): 696–9

    Article  PubMed  CAS  Google Scholar 

  63. Masimirembwa CM, Gustafsson LL, Dahl ML, et al. Lack of effect of chloroquine on the debrisoquine (CYP2D6 and S-mephenytoin (CYP2C19) hydroxylation phenotypes. Br J Clin Pharmacol 1996; 41(4): 344–6

    Article  PubMed  CAS  Google Scholar 

  64. Adedoyin A, Frye RF, Mauro K, et al. Chloroquine modulation of specific metabolizing enzymes activities: investigation with selective five drug cocktail. Br J Clin Pharmacol 1998; 46(3): 215–9

    Article  PubMed  CAS  Google Scholar 

  65. Ruscoe JE, Tingle MD, O’Neill PM, et al. Effect of disposition of mannich antimalarial agents on their pharmacology and toxicology. Antimicrob Agents Chemother 1998; 42(9): 2410–6

    PubMed  CAS  Google Scholar 

  66. Winstanley PA, Edwards G, Orme ML, et al. Effect of dose size on amodiaquine pharmacokinetics after oral administration. Eur J Clin Pharmacol 1987; 33(3): 331–3

    Article  PubMed  CAS  Google Scholar 

  67. Winstanley PA, Simooya O, Kofi-Ekue JM, et al. The disposition of amodiaquine in Zambians and Nigerians with malaria. Br J Clin Pharmacol 1990; 29(6): 695–701

    Article  PubMed  CAS  Google Scholar 

  68. Pussard E, Verdier F, Faurisson F, et al. Disposition of monodesethylamodiaquine after a single oral dose of amodiaquine and three regimens for prophylaxis against Plasmodium falciparum, malaria. Eur J Clin Pharmacol 1987; 33(4): 409–14

    Article  PubMed  CAS  Google Scholar 

  69. Fu S, Xiao S-H. Pyronaridine: a new antimalarial drug. Parasitol Today 1991; 7(11): 310–3

    Article  PubMed  CAS  Google Scholar 

  70. Chang C, Lin-Hua T, Jantanavivat C. Studies on a new antimalarial compound: pyronaridine. Trans R Soc Trop Med Hyg 1992; 86(1): 7–10

    Article  PubMed  CAS  Google Scholar 

  71. Peters W, Robinson BL. The chemotherapy of rodent malaria. XLVII. Studies on pyronaridine and other Mannich base antimalarials. Ann Trop Med Parasitol 1992; 86(5): 455–65

    CAS  Google Scholar 

  72. Ringwald P, Bickii J, Basco L. Randomised trial of pyronaridine versus chloroquine for acute uncomplicated falciparum malaria in Africa. Lancet 1996; 347(8993): 24–8

    Article  PubMed  CAS  Google Scholar 

  73. Edwards G, McGrath CS, Ward SA, et al. Interactions among primaquine, malaria infection and other antimalarials in Thai subjects. Br J Clin Pharmacol 1993; 35(2): 193–8

    Article  PubMed  CAS  Google Scholar 

  74. Na Bangchang K, Songsaeng W, Thanavibul A, et al. Pharmacokinetics of primaquine in G6PD deficient and G6PD normal patients with vivax malaria. Trans R Soc Trop Med Hyg 1994; 88(2): 220–2

    Article  Google Scholar 

  75. Constantino L, Paixao P, Moreira R, et al. Metabolism of primaquine by liver homogenate fractions. Evidence for monoamine oxidase and cytochrome P450 involvement in the oxidative deamination of primaquine to carboxyprimaquine. Exp Toxicol Pathol 1999; 51(4–5): 299–303

    CAS  Google Scholar 

  76. Singhasivanon V, Sabcharoen A, Attanath P, et al. Pharmacokinetics of primaquine in healthy volunteers. Southeast Asian J Trop Med Public Health 1991; 22(4): 527–33

    PubMed  CAS  Google Scholar 

  77. Brueckner RP, Lasseter KC, Lin ET, et al. First-time-in-humans safety and pharmacokinetics of WR 238605, a new antimalarial. Am J Trop Med Hyg 1998; 58(5): 645–9

    PubMed  CAS  Google Scholar 

  78. Idowu OR, Peggins JO, Brewer TG, et al. Metabolism of a candidate 8-aminoquinoline antimalarial agent, WR 238605, by rat liver microsomes. Drug Metab Dispos 1995; 23(1): 1–17

    PubMed  CAS  Google Scholar 

  79. Brewer TG, Genovese RF, Newman DB, et al. Factors relating to neurotoxicity of artemisinin antimalarial drugs — ‘listening to arteether’. Med Trop (Mars) 1998; 58 Suppl. 3: 22–7

    CAS  Google Scholar 

  80. Nontprasert A, Nosten-Bertrand M, Pukrittayakamee S, et al. Assessment of the neurotoxicity of parenteral artemisinin derivatives in mice. Am J Trop Med Hyg 1998; 59(4): 519–22

    PubMed  CAS  Google Scholar 

  81. de Vries PJ, Dien TK. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs 1996; 52(6): 818–36

    Article  PubMed  Google Scholar 

  82. de Vries PJ, Tran KD, Nguyen XK, et al. The pharmacokinetics of a single dose of artemisinin in patients with uncomplicated falciparum malaria. Am J Trop Med Hyg 1997; 56(5): 503–7

    PubMed  Google Scholar 

  83. Duc DD, De VP, Nguyen XK, et al. The pharmacokinetics of a single dose of artemisinin in healthy Vietnamese subjects. Am J Trop Med Hyg 1994; 51(6): 785–90

    PubMed  CAS  Google Scholar 

  84. Titulaer HA, Zuidema J, Kager PA, et al. The pharmacokinetics of artemisinin after oral, intramuscular and rectal administration to volunteers. J Pharm Pharmacol 1990; 42(11): 810–3

    Article  PubMed  CAS  Google Scholar 

  85. Ashton M, Nguyen DS, Nguyen VH, et al. Artemisinin kinetics and dynamics during oral and rectal treatment of uncomplicated malaria. Clin Pharmacol Ther 1998; 63(4): 482–93

    Article  PubMed  CAS  Google Scholar 

  86. Koopmans R, Duc DD, Kager PA, et al. The pharmacokinetics of artemisinin suppositories in Vietnamese patients with malaria. Trans R Soc Trop Med Hyg 1998; 92(4): 434–6

    Article  PubMed  CAS  Google Scholar 

  87. Koopmans R, Ha LD, Duc DD, et al. The pharmacokinetics of artemisinin after administration of two different suppositories to healthy Vietnamese subjects. Am J Trop Med Hyg 1999; 60(2): 244–7

    PubMed  CAS  Google Scholar 

  88. Sidhu JS, Ashton M. Single-dose, comparative study of venous, capillary and salivary artemisinin concentrations in healthy, male adults. Am J Trop Med Hyg 1997; 56(1): 13–6

    PubMed  CAS  Google Scholar 

  89. Hassan AM, Ashton M, Kihamia CM, et al. Multiple dose pharmacokinetics of oral artemisinin and comparison of its efficacy with that of oral artesunate in falciparum malaria patients. Trans R Soc Trop Med Hyg 1996; 90(1): 61–5

    Article  Google Scholar 

  90. Ashton M, Hai TN, Sy ND, et al. Artemisinin pharmacokinetics is time-dependent during repeated oral administration in healthy male adults. Drug Metab Dispos 1998; 26(1): 25–7

    PubMed  CAS  Google Scholar 

  91. de Vries PJ, Nguyen XK, Tran KD, et al. The pharmacokinetics of a single dose of artemisinin in subjects with liver cirrhosis. Trop Med Int Health 1997; 2(10): 957–62

    Article  PubMed  Google Scholar 

  92. Svensson US, Ashton M. Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol 1999; 48(4): 528–35

    Article  PubMed  CAS  Google Scholar 

  93. Svensson US, Ashton M, Trinh NH, et al. Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 1998; 64(2): 160–7

    Article  PubMed  CAS  Google Scholar 

  94. Mihara K, Svensson US, Tybring G, et al. Stereospecific analysis of omeprazole supports artemisinin as a potent inducer of CYP2C19. Fundam Clin Pharmacol 1999; 13(6): 671–5

    Article  PubMed  CAS  Google Scholar 

  95. Benakis A, Paris M, Anh TK, et al. Pharmacokinetic study of dihydroartemisinin in malaria patients in Vietnam. Jap J Trop Med Hyg 2000; 24 Suppl. 1: 71–6

    Google Scholar 

  96. Zhao KC, Song ZY. Pharmacokinetics of dihydroqinghaosu in human volunteers and comparison with qinghaosu. Yao Hsueh Hsueh Pao 1993; 28(5): 342–6

    PubMed  CAS  Google Scholar 

  97. Le NH, Na-Bangchang K, Le TD, et al. Phamacokinetics of a single oral dose of dihydroartemisinin in Vietnamese healthy volunteers. Southeast Asian J Trop Med Public Health 1999; 30(1): 11–6

    PubMed  CAS  Google Scholar 

  98. Batty KT, Ilett KF, Edwards G, et al. Assessment of the effect of malaria infection on hepatic clearance of dihydroartemisinin using rat liver perfusions and microsomes. Br J Pharmacol 1998; 125(1): 159–67

    Article  PubMed  CAS  Google Scholar 

  99. Leskovac V, Theoharides AD. Hepatic metabolism of artemisinin drugs. I. Drug metabolism in rat liver microsomes. Comp Biochem Physiol 1991; 99(3): 383–90

    CAS  Google Scholar 

  100. Murdoch RT, Ghabrial H, Mihaly GW, et al. Malaria infection impairs glucuronidation and biliary excretion by the isolated perfused rat liver. Xenobiotica 1991; 21(12): 1571–82

    Article  PubMed  CAS  Google Scholar 

  101. Leskovac V, Peggins JO. Hepatic metabolism of artemisinin drugs. III. Induction of hydrogen peroxide production in rat liver microsomes by artemisinin drugs. Comp Biochem Physiol 1992; 101(2): 203–8

    Article  CAS  Google Scholar 

  102. Batty KT, Thu LT, Davis TM, et al. A pharmacokinetic and pharmacodynamic study of intravenous vs oral artesunate in uncomplicated falciparum malaria. Br J Clin Pharmacol 1998; 45(2): 123–9

    Article  PubMed  CAS  Google Scholar 

  103. Benakis A, Paris M, Loutan L, et al. Pharmacokinetics of artemisinin and artesunate after oral administration in healthy volunteers. Am J Trop Med Hyg 1997; 56(1): 17–23

    PubMed  CAS  Google Scholar 

  104. Khanh NX, de Vries PJ, Ha LD, et al. Declining concentrations of dihydroartemisinin in plasma during 5-day oral treatment with artesunate for Falciparum malaria. Antimicrob Agents Chemother 1999; 43(3): 690–2

    PubMed  CAS  Google Scholar 

  105. Na Bangchang K, Karbwang J, Thomas CG, et al. Pharmacokinetics of artemether after oral administration to healthy Thai males and patients with acute, uncomplicated falciparum malaria. Br J Clin Pharmacol 1994; 37(3): 249–53

    Article  PubMed  CAS  Google Scholar 

  106. Teja-Isavadharm P, Nosten F, Kyle DE, et al. Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay [see comments]. Br J Clin Pharmacol 1996; 42(5): 599–604

    PubMed  CAS  Google Scholar 

  107. van Agtmael MA, Cheng-Qi S, Qing JX, et al. Multiple dose pharmacokinetics of artemether in Chinese patients with uncomplicated falciparum malaria. Int J Antimicrob Agents 1999; 12(2): 151–8

    Article  PubMed  Google Scholar 

  108. Karbwang J, Na Bangchang K, Congpuong K, et al. Pharmacokinetics and bioavailability of oral and intramuscular artemether. Eur J Clin Pharmacol 1997; 52(4): 307–10

    Article  PubMed  CAS  Google Scholar 

  109. van Agtmael MA, Gupta V, van der Wosten TH, et al. Grapefruit juice increases the bioavailability of artemether. Eur J Clin Pharmacol 1999; 55(5): 405–10

    Article  PubMed  Google Scholar 

  110. van Agtmael MA, Gupta V, van der Graaf CA, et al. The effect of grapefruit juice on the time-dependent decline of artemether plasma levels in healthy subjects. Clin Pharmacol Ther 1999; 66(4): 408–14

    Article  PubMed  Google Scholar 

  111. van Agtmael MA, van der Graaf CA, Dien TK, et al. The contribution of the enzymes CYP2D6 and CYP2C19 in the demethylation of artemether in healthy subjects. Eur J Drug Metab Pharmacokinet 1998; 23(3): 429–36

    Article  PubMed  Google Scholar 

  112. Kager PA, Schultz MJ, Zijlstra EE, et al. Arteether administration in humans: preliminary studies of pharmacokinetics, safety and tolerance. Trans R Soc Trop Med Hyg 1994; 88 Suppl. 1: S53–S4

    Article  PubMed  Google Scholar 

  113. Wanwimolruk S, Edwards G, Ward SA, et al. The binding of the antimalarial arteether to human plasma proteins in vitro. J Pharm Pharmacol 1992; 44(11): 940–2

    Article  PubMed  CAS  Google Scholar 

  114. Grace JM, Aguilar AJ, Trotman KM, et al. Metabolism of beta-arteether to dihydroqinghaosu by human liver microsomes and recombinant cytochrome P450 [published erratum appears in Drug Metab Dispos 1998 Jul; 26 (7): 704]. Drug Metab Dispos 1998; 26(4): 313–7

    PubMed  CAS  Google Scholar 

  115. Leo KU, Grace JM, Li Q, et al. Effects of Plasmodium berghei infection on arteether metabolism and disposition. Pharmacology 1997; 54(5): 276–84

    Article  PubMed  CAS  Google Scholar 

  116. Nzila AM, Mberu EK, Sulo J, et al. Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites. Antimicrob Agents Chemother 2000; 44(4): 991–6

    Article  PubMed  CAS  Google Scholar 

  117. Plowe CV, Cortese JF, Djimde A, et al. Mutations in Plasmodium. falciparum. dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J Infect Dis 1997; 176(6): 1590–6

    Article  PubMed  CAS  Google Scholar 

  118. Bygbjerg I, Ravn P, Ronn A, et al. Human pharmacokinetics of proguanil and its metabolites. Trop Med Parasitol 1987; 38(2): 77–80

    PubMed  CAS  Google Scholar 

  119. Edstein MD, Veenendaal JR, Rieckmann KH. Multiple-dose kinetics in healthy volunteers and in vitro antimalarial activity of proguanil plus dapsone. Chemotherapy 1990; 36(3): 169–76

    Article  PubMed  CAS  Google Scholar 

  120. Wattanagoon Y, Taylor RB, Moody RR, et al. Single dose pharmacokinetics of proguanil and its metabolites in healthy subjects. Br J Clin Pharmacol 1987; 24(6): 775–80

    Article  PubMed  CAS  Google Scholar 

  121. Srivastava IK, Vaidya AB. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother 1999; 43(6): 1334–9

    PubMed  CAS  Google Scholar 

  122. Birkett DJ, Rees D, Andersson T, et al. In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by 5-mephenytoin hydroxylase. Br J Clin Pharmacol 1994; 37(5): 413–20

    Article  PubMed  CAS  Google Scholar 

  123. Skjelbo E, Mutabingwa TK, Bygbjerg I, et al. Chloroguanide metabolism in relation to the efficacy in malaria prophylaxis and the S-mephenytoin oxidation in Tanzanians. Clin Pharmacol Ther 1996; 59(3): 304–11

    Article  PubMed  CAS  Google Scholar 

  124. Rasmussen BB, Nielsen TL, Brosen K. Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol 1998; 54(9–10): 735–40

    Article  PubMed  CAS  Google Scholar 

  125. Helsby NA, Edwards G, Breckenridge AM, et al. The multiple dose pharmacokinetics of proguanil. Br J Clin Pharmacol 1993; 35(6): 653–6

    Article  PubMed  CAS  Google Scholar 

  126. Kaneko A, Bergqvist Y, Taleo G, et al. Proguanil disposition and toxicity in malaria patients from Vanuatu with high frequencies of CYP2C19 mutations. Pharmacogenetics 1999; 9(3): 317–26

    PubMed  CAS  Google Scholar 

  127. Watkins WM, Mberu EK, Nevill CG, et al. Variability in the metabolism of proguanil to the active metabolite cycloguanil in healthy Kenyan adults. Trans R Soc Trop Med Hyg 1990; 84(4): 492–5

    Article  PubMed  CAS  Google Scholar 

  128. Edstein MD, Looareesuwan S, Viravan C, et al. Pharmacokinetics of proguanil in malaria patients treated with proguanil plus atovaquone. Southeast Asian J Trop Med Public Health 1996; 27(2): 216–20

    PubMed  CAS  Google Scholar 

  129. Edstein MD, Looareesuwan S, Wilairatana P, et al. Disposition of proguanil in Thai patients with uncomplicated falciparum malaria. Am J Trop Med Hyg 1997; 56(5): 498–502

    PubMed  CAS  Google Scholar 

  130. Veenendaal JR, Edstein MD, Rieckmann KH. Pharmacokinetics of chlorproguanil in man after a single oral dose of Lapudrine. Chemotherapy 1988; 34(4): 275–83

    Article  PubMed  CAS  Google Scholar 

  131. Petersen E, Flachs H, Hogh B, et al. Plasma, erythrocyte and urine concentrations of chlorproguanil and two metabolites in man after different doses. J Trop Med Hyg 1991; 94(3): 199–205

    PubMed  CAS  Google Scholar 

  132. Amukoye E, Winstanley PA, Watkins WM, et al. Chlorproguanildapsone: effective treatment for uncomplicated falciparum malaria. Antimicrob Agents Chemother 1997; 41(10): 2261–4

    PubMed  CAS  Google Scholar 

  133. Tanariya P, Na-Bangchang K, Ubalee R, et al. Pharmacokinetic interactions of artemether and pyrimethamine in healthy male Thais. Southeast Asian J Trop Med Public Health 1998; 29(1): 18–23

    CAS  Google Scholar 

  134. Winstanley PA, Watkins WM, Newton CR, et al. The disposition of oral and intramuscularpyrimethamine/sulphadoxine in Kenyan children with high parasitaemia but clinically non-severe falciparum malaria. Br J Clin Pharmacol 1992; 33(2): 143–8

    Article  PubMed  CAS  Google Scholar 

  135. Reynolds JEF, editor. Antimalarials. In: Martindale, The extra pharmacopeia. 13th ed. London: The Pharmaceutical Press, 1993: 405–8

  136. Reynolds JEF, editor. Antibacterial agents. In: Martindale, The extra pharmacopeia. 13th ed. London: The Pharmaceutical Press, 1993: 205–8

  137. Bluhm RE, Adedoyin A, McCarver DG, et al. Development of dapsone toxicity in patients with inflammatory dermatoses: activity of acetylation and hydroxylation of dapsone as risk factors. Clin Pharmacol Ther 1999; 65(6): 598–605

    Article  PubMed  CAS  Google Scholar 

  138. Irshaid Y, Adedoyin A, Lotze M, et al. Monoacetyldapsone inhibition of dapsone N-hydroxylation by human and rat liver microsomes. Drug Metab Dispos 1994; 22(1): 161–4

    PubMed  CAS  Google Scholar 

  139. Gill HJ, Tingle MD, Park BK. N-Hydroxylation of dapsone by multiple enzymes of cytochrome P450: implications for inhibition of haemotoxicity. Br J Clin Pharmacol 1995; 40(6): 531–8

    Article  PubMed  CAS  Google Scholar 

  140. Mitra AK, Thummel KE, Kalhorn TF, et al. Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo. Clin Pharmacol Ther 1995; 58(5): 556–66

    Article  PubMed  CAS  Google Scholar 

  141. May DG, Porter J, Wilkinson GR, et al. Frequency distribution of dapsone N-hydroxylase, a putative probe for P4503A4 activity, in a white population. Clin Pharmacol Ther 1994; 55(5): 492–500

    Article  PubMed  CAS  Google Scholar 

  142. Coleman MD, Scott AK, Breckenridge AM, et al. The use of cimetidine as a selective inhibitor of dapsone N-hydroxylation in man. Br J Clin Pharmacol 1990; 30(5): 761–7

    Article  PubMed  CAS  Google Scholar 

  143. Tingle MD, Coleman MD, Park BK. The effect of preincubation with cimetidine on the N-hydroxylation of dapsone by human liver microsomes. Br J Clin Pharmacol 1991; 32(1): 120–3

    Article  PubMed  CAS  Google Scholar 

  144. Mandell GL, Petri WA. Antimicrobial agents: sulfonamides, trimethoprim-sulfamethoxazole, quinolones, and agents for urinary tract infections. In: Hardman JG, Limbird LE, Molinoff PB, et al., editors. Goodman & Gilman’s The pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 1057–64

    Google Scholar 

  145. Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45(6): 525–38

    Article  PubMed  CAS  Google Scholar 

  146. Haile LG, Flaherty JF. Atovaquone: a review. Ann Pharmacother 1993; 27(12): 1488–94

    PubMed  CAS  Google Scholar 

  147. Hussein Z, Eaves J, Hutchinson DB, et al. Population pharmacokinetics of atovaquone in patients with acute malaria caused by Plasmodium. falciparum. Clin Pharmacol Ther 1997; 61(5): 518–30

    Article  PubMed  CAS  Google Scholar 

  148. White NJ, Olliaro PL. Strategies for the prevention of antimalarial drug resistance: rationale for combination chemotherapy for malaria. Parasitol Today 1996; 12(10): 399–401

    Article  PubMed  CAS  Google Scholar 

  149. Wanwimolruk S, Kang W, Coville PF, et al. Marked enhancement by rifampicin and lack of effect of isoniazid on the elimination of quinine in man. Br J Clin Pharmacol 1995; 40(1): 87–91

    Article  PubMed  CAS  Google Scholar 

  150. Karbwang J, Bunnag D, Harinasuta T, et al. Pharmacokinetics of quinine, quinidine and cinchonine when given as combination. Southeast Asian J Trop Med Public Health 1992; 23(4): 773–6

    PubMed  CAS  Google Scholar 

  151. Barennes H, Kahiatani F, Pussard E, et al. Intrarectal Quinimax (an association of Cinchona alkaloids) for the treatment of Plasmodium falciparum malaria in children in Niger: efficacy and pharmacokinetics. Trans R Soc Trop Med Hyg 1995; 89(4): 418–21

    Article  PubMed  CAS  Google Scholar 

  152. Newton CR, Winstanley PA, Watkins WM, et al. A single dose of intramuscular sulfadoxine-pyrimethamine as an adjunct to quinine in the treatment of severe malaria: pharmacokinetics and efficacy. Trans R Soc Trop Med Hyg 1993; 87(2): 207–10

    Article  PubMed  CAS  Google Scholar 

  153. Pasvol G, Newton CR, Winstanley PA, et al. Quinine treatment of severe falciparum malaria in African children: a randomized comparison of three regimens. Am J Trop Med Hyg 1991; 45(6): 702–13

    PubMed  CAS  Google Scholar 

  154. Supanaranond W, Suputtamongkol Y, Davis TM, et al. Lack of a significant adverse cardiovascular effect of combined quinine and mefloquine therapy for uncomplicated malaria. Trans R Soc Trop Med Hyg 1997; 91(6): 694–6

    Article  PubMed  CAS  Google Scholar 

  155. Karbwang J, Na Bangchang K, Thanavibul A, et al. Quinine toxicity when given with doxycycline and mefloquine. Southeast Asian J Trop Med Public Health 1994; 25(2): 397–400

    PubMed  CAS  Google Scholar 

  156. Couet W, Laroche R, Floch JJ, et al. Pharmacokinetics of quinine and doxycycline in patients with acute falciparum malaria: a study in Africa. Ther Drug Monit 1991; 13(6): 496–501

    Article  PubMed  CAS  Google Scholar 

  157. Kaukonen KM, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 1997; 62(5): 510–7

    Article  PubMed  CAS  Google Scholar 

  158. Nosten F, van Vugt M, Price R, et al. Effects of artesunatemefloquine combination on incidence of Plasmodium. falciparum. malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 2000; 356(9226): 297–302

    Article  PubMed  CAS  Google Scholar 

  159. Na Bangchang K, Karbwang J, Back DJ. Primaquine metabolism by human liver microsomes: effect of other antimalarial drugs. Biochem Pharmacol 1992; 44(3): 587–90

    Article  CAS  Google Scholar 

  160. Singhasivanon V, Chongsuphajaisiddhi T, Sabchareon A, et al. Pharmacokinetic study of mefloquine in Thai children aged 5-12 years suffering from uncomplicated falciparum malaria treated with MSP or MSP plus primaquine. Eur J Drug Metab Pharmacokinet 1994; 19(1): 27–32

    Article  PubMed  CAS  Google Scholar 

  161. Karbwang J, Na Bangchang K, Thanavibul A, et al. Pharmacokinetics of mefloquine in the presence of primaquine. Eur J Clin Pharmacol 1992; 42(5): 559–60

    Article  PubMed  CAS  Google Scholar 

  162. Karbwang J, Back DJ, Bunnag D, et al. Pharmacokinetics of mefloquine in combination with sulfadoxine-pyrimethamine and primaquine in male Thai patients with falciparum malaria. Bull World Health Organ 1990; 68(5): 633–8

    PubMed  CAS  Google Scholar 

  163. Hassan Alin M, Ashton M, Kihamia CM, et al. Clinical efficacy and pharmacokinetics of artemisinin monotherapy and in combination with mefloquine in patients with falciparum malaria. Br J Clin Pharmacol 1996; 41(6): 587–92

    Article  Google Scholar 

  164. Na Bangchang K, Tippawangkosol P, Thanavibul A, et al. Pharmacokinetic and pharmacodynamic interactions of mefloquine and dihydroartemisinin. Int J Clin Pharmacol Res 1999; 19(1): 9–17

    PubMed  CAS  Google Scholar 

  165. Na Bangchang K, Tippanangkosol P, Ubalee R, et al. Comparative clinical trial of four regimens of dihydroartemisinin-mefloquine in multidrug-resistant falciparum malaria. Trop Med Int Health 1999; 4(9): 602–10

    Article  PubMed  CAS  Google Scholar 

  166. Karbwang J, Na Bangchang K, Thanavibul A, et al. Pharmacokinetics of mefloquine alone or in combination with artesunate. Bull World Health Organ 1994; 72(1): 83–7

    PubMed  CAS  Google Scholar 

  167. Na Bangchang K, Karbwang J, Molunto P, et al. Pharmacokinetics of mefloquine, when given alone and in combination with artemether, in patients with uncomplicated falciparum malaria. Fundam Clin Pharmacol 1995; 9(6): 576–82

    Article  PubMed  CAS  Google Scholar 

  168. Na Bangchang K, Molunto P, Banmairuroi V, et al. Pharmacokinetics of mefloquine when given as a single and two divided-dose regimens. Int J Clin Pharmacol Res 1995; 15(5–6): 215–20

    PubMed  CAS  Google Scholar 

  169. Karbwang J, Na Bangchang K, Back DJ, et al. Effect of tetracycline on mefloquine pharmacokinetics in Thai males. Eur J Clin Pharmacol 1992; 43(5): 567–9

    Article  PubMed  CAS  Google Scholar 

  170. Okonkwo CA, Coker HA, Agomo PU, et al. Effect of chlorpheniramine on the pharmacokinetics of and response to chloroquine of Nigerian children with falciparum malaria. Trans R Soc Trop Med Hyg 1999; 93(3): 306–11

    Article  PubMed  CAS  Google Scholar 

  171. Touze JE, Keundjian A, Fusai T, et al. Human pharmacokinetics of chloroquine and proguanil delivered in a single capsule for malaria chemoprophylaxis. Trop Med Parasitol 1995; 46(3): 158–60

    PubMed  CAS  Google Scholar 

  172. van Vugt M, Edstein MD, Proux S, et al. Absence of an interaction between artesunate and atovaquone-proguanil. Eur J Clin Pharmacol 1999; 55(6): 469–74

    Article  PubMed  Google Scholar 

  173. Edstein MD, Rieckmann KH. Lack of effect of proguanil on the pharmacokinetics of dapsone in healthy volunteers. Chemotherapy 1993; 39(4): 235–41

    Article  PubMed  CAS  Google Scholar 

  174. Winstanley P, Watkins W, Muhia D, et al. Chlorproguanil/dapsone for uncomplicated Phismodium falciparum. malaria in young children: pharmacokinetics and therapeutic range. Trans R Soc Trop Med Hyg 1997; 91(3): 322–7

    Article  PubMed  CAS  Google Scholar 

  175. Radloff PD, Philipps J, Nkeyi M, et al. Atovaquone and proguanil for Phismodium falciparum. malaria. Lancet 1996; 347(9014): 1511–4

    Article  CAS  Google Scholar 

  176. Canfield CJ, Pudney M, Gutteridge WE. Interactions of atovaquone with other antimalarial drugs against Phismodium falciparum in vitro. Exp Parasitol 1995; 80(3): 373–81

    Article  PubMed  CAS  Google Scholar 

  177. Gillotin C, Mamet JP, Veronese L. Lack of a pharmacokinetic interaction between atovaquone and proguanil. Eur J Clin Pharmacol 1999; 55(4): 311–5

    Article  PubMed  CAS  Google Scholar 

  178. Hussein Z, Eaves CJ, Hutchinson DB, et al. Population pharmacokinetics of proguanil in patients with acute P. falciparum malaria after combined therapy with atovaquone. Br J Clin Pharmacol 1996; 42(5): 589–97

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Teunis Eggelte for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giao, P.T., de Vries, P.J. Pharmacokinetic Interactions of Antimalarial Agents. Clin Pharmacokinet 40, 343–373 (2001). https://doi.org/10.2165/00003088-200140050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140050-00003

Keywords

Navigation