Skip to main content
Log in

Irritable Bowel Syndrome

Recent and Novel Therapeutic Approaches

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Irritable bowel syndrome (IBS) is a highly prevalent functional gastrointestinal disorder affecting up to 3–15% of the general population in Western countries. It is characterised by unexplained abdominal pain, discomfort and bloating in association with altered bowel habits. The pathophysiology of IBS is considered to be multifactorial, involving disturbances of the brain-gut-axis: IBS has been associated with abnormal gastrointestinal motor functions, visceral hypersensitivity, psychosocial factors, autonomic dysfunction and mucosal inflammation. Traditional IBS therapy is mainly symptom oriented and often unsatisfactory. Hence, there is a need for new treatment strategies. Increasing knowledge of brain-gut physiology, mechanisms, and neurotransmitters and receptors involved in gastrointestinal motor and sensory function have led to the development of several new therapeutic approaches. This article provides a systematic overview of recently approved or novel medications that show promise for the treatment of IBS; classification is based on the physiological systems targeted by the medication. The article includes agents acting on the serotonin receptor or serotonin transporter system, novel selective anticholinergics, α-adrenergic agonists, opioid agents, cholecystokinin antagonists, neurokinin antagonists, somatostatin receptor agonists, neurotrophin-3, corticotropin releasing factor antagonists, chloride channel activators, guanylate cyclase-c agonists, melatonin and atypical benzodiazepines. Finally, the role of probiotics and antibacterials in the treatment of IBS is summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drossman DA, Li Z, Andruzzi E, et al. US householder survey of functional gastrointestinal disorders: prevalence, sociodemography, and health impact. Dig Dis Sci 1993; 38(9): 1569–80

    Article  PubMed  CAS  Google Scholar 

  2. Cremonini F, Talley NJ. Irritable bowel syndrome: epidemiology, natural history, health care seeking and emerging risk factors. Gastroenterol Clin North Am 2005; 34(2): 189–204

    Article  PubMed  Google Scholar 

  3. Drossman DA, Camilleri M, Mayer EA, et al. AGA technical review on irritable bowel syndrome. Gastroenterology 2002; 123(6): 2108–31

    Article  PubMed  Google Scholar 

  4. Thompson WG, Longstreth GF, Drossman DA, et al. Functional bowel disorders and functional abdominal pain. Gut 1999; 45 Suppl. 2: II43–7

    Article  PubMed  Google Scholar 

  5. Camilleri M. Mechanisms in IBS: something old, something new, something borrowed. Neurogastroenterol Motil 2005; 17(3): 311–6

    Article  PubMed  CAS  Google Scholar 

  6. Dunlop SP, Coleman NS, Blackshaw E, et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin Gastroenterol Hepatol 2005; 3(4): 349–57

    Article  PubMed  CAS  Google Scholar 

  7. Bearcroft CP, Perrett D, Farthing MJ. Postprandial plasma 5-hydroxytryptamine in diarrhoea predominant irritable bowel syndrome: a pilot study. Gut 1998; 42(1): 42–6

    Article  PubMed  CAS  Google Scholar 

  8. Houghton LA, Atkinson W, Whitaker RP, et al. Increased platelet depleted plasma 5-hydroxytryptamine concentration following meal ingestion in symptomatic female subjects with diarrhoea predominant irritable bowel syndrome. Gut 2003; 52(5): 663–70

    Article  PubMed  CAS  Google Scholar 

  9. Roka R, Rosztoczy A, Leveque M, et al. Fecal serine-protease activity: a pathophysiological marker in diarrhea-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol 2006. In press

  10. Camilleri M. Management of the irritable bowel syndrome. Gastroenterology 2001; 120: 652–68

    Article  PubMed  CAS  Google Scholar 

  11. Spiller RC. Postinfectious irritable bowel syndrome. Gastroenterology 2003; 124(6): 1662–71

    Article  PubMed  Google Scholar 

  12. Spiller RC, Jenkins D, Thornley JP, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 2000; 47(6): 804–11

    Article  PubMed  CAS  Google Scholar 

  13. Spiller RC. Infection, immune function, and functional gut disorders. Clin Gastroenterol Hepatol 2004; 2(6): 445–55

    Article  PubMed  Google Scholar 

  14. Borman R. Serotonergic modulation and irritable bowel syndrome. Expert Opin Emerg Drugs 2001; 6(1): 57–68

    Article  PubMed  CAS  Google Scholar 

  15. Barbara G, Stanghellini V, De Giorgio R, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004; 126(3): 693–702

    Article  PubMed  Google Scholar 

  16. O’Mahony L, McCarthy J, Kelly P, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 2005; 128(3): 541–51

    Article  PubMed  Google Scholar 

  17. Camilleri M. Treating irritable bowel syndrome: overview, perspective and future therapies. Br J Pharmacol 2004; 141:1237–48

    Article  PubMed  CAS  Google Scholar 

  18. Gershon MD. Review article: roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther 1999; 13 Suppl. 2: 15–30

    Google Scholar 

  19. Gershon MD. Review article: serotonin receptors and transporters: roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 2004; 20 Suppl. 7: 3–14

    Article  Google Scholar 

  20. Hicks GA, Coldwell JR, Schindler M, et al. Excitation of rat colonic afferent fibres by 5-HT (3) receptors. J Physiol 2002; 544 (Pt 3): 861–9

    Article  PubMed  CAS  Google Scholar 

  21. Gershon MD. Plasticity in serotonin control mechanisms in the gut. Curr Opin Pharmacol 2003; 3(6): 600–7

    Article  PubMed  CAS  Google Scholar 

  22. Coates MD, Mahoney CR, Linden DR, et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 2004; 126(7): 1657–64

    Article  PubMed  CAS  Google Scholar 

  23. Andrews C, Camilleri M, Bharucha AE, et al. Serotonin-transporter (SERT) polymorphism genotype and SERT expression in mucosal biopsies of patients with irritable bowel syndrome [abstract]. Gastroenterology 2006. In press

  24. Gunput MD. Review article: clinical pharmacology of alosetron. Aliment Pharmacol Ther 1999; 13 Suppl. 2: 70–6

    Article  Google Scholar 

  25. Mayer EA, Berman S, Derbyshire SW, et al. The effect of the 5-HT3 receptor antagonist, alosetron, on brain responses to visceral stimulation in irritable bowel syndrome patients. Aliment Pharmacol Ther 2002; 16(7): 1357–66

    Article  PubMed  CAS  Google Scholar 

  26. Cremonini F, Delgado-Aros S, Camilleri M. Efficacy of alosetron in irritable bowel syndrome: a meta-analysis of randomized controlled trials. Neurogastroenterol Motil 2003; 15(1): 79–86

    Article  PubMed  CAS  Google Scholar 

  27. Chang L, Ameen VZ, Dukes GE, et al. A dose-ranging, phase II study of the efficacy and safety of alosetron in men with diarrhea-predominant IBS. Am J Gastroenterol 2005; 100(1): 115–23

    Article  PubMed  CAS  Google Scholar 

  28. Miner P, Stanton DB, Carter F, et al. Cilansetron in irritable bowel syndrome with diarrhea predominance (IBS-D): efficacy and safety on a 3 month US study [abstract]. Am J Gastroenterol 2004; 99: S277

    Google Scholar 

  29. Bradette M, Monnikes H, Carter F, et al. Cilansetron in irritable bowel syndrome with diarrhea predominance (IBS-D): efficacy and safety in a 6 month global study [abstract]. Gastroenterology 2004; 126: A42

    Article  CAS  Google Scholar 

  30. Cilansetron: KC 9946. Drugs R D 2005; 6 (3): 169–73

  31. Walker AM, Bohn RL, Cali C, et al. Risk factors for colon ischemia. Am J Gastroenterol 2004; 99(7): 1333–7

    Article  PubMed  Google Scholar 

  32. Coleman NS, Marciani L, Blackshaw E, et al. Effect of a novel 5-HT3 receptor agonist MKC-733 on upper gastrointestinal motility in humans. Aliment Pharmacol Ther 2003; 18(10): 1039–48

    Article  PubMed  CAS  Google Scholar 

  33. Beattie DT, Smith JA, Marquess D, et al. The 5-HT4 receptor agonist, tegaserod, is a potent 5-HT2B receptor antagonist in vitro and in vivo. Br J Pharmacol 2004; 143(5): 549–60

    Article  PubMed  CAS  Google Scholar 

  34. Prather CM, Camilleri M, Zinsmeister AR, et al. Tegaserod accelerates orocecal transit in patients with constipation-predominant irritable bowel syndrome. Gastroenterology 2000; 118(3): 463–8

    Article  PubMed  CAS  Google Scholar 

  35. Foxx-Orenstein A, Camilleri M, Szarka LA, et al. Non-selective opioid antagonist does not increase small intestine or colon transit effect of tegaserod in subjects with constipation predominant-IBS [abstract]. Neurogastroenterol Motil 2005; 17 Suppl. 2: A43

    Google Scholar 

  36. Evans BW, Clark WK, Moore DJ, et al. Tegaserod for the treatment of irritable bowel syndrome. Cochrane Database Syst Rev 2004; (1): CD003960

  37. Muller-Lissner S, Holtmann G, Rueegg P, et al. Tegaserod is effective in the initial and retreatment of irritable bowel syndrome with constipation. Aliment Pharmacol Ther 2005; 21(1): 11–20

    Article  PubMed  CAS  Google Scholar 

  38. Tack J, Muller-Lissner S, Bytzer P, et al. A randomised controlled trial assessing the efficacy and safety of repeated tegaserod therapy in women with irritable bowel syndrome with constipation. Gut 2005; 54(12): 1707–13

    Article  PubMed  CAS  Google Scholar 

  39. Layer P, Keller J, Mueller-Lissner S, et al. Tegaserod: long-term treatment for irritable bowel syndrome patients with constipation in primary care. Digestion 2005; 71(4): 238–44

    Article  PubMed  Google Scholar 

  40. Kamm MA, Muller-Lissner S, Talley NJ, et al. Tegaserod for the treatment of chronic constipation: a randomized, double-blind, placebo-controlled multinational study. Am J Gastroenterol 2005; 100(2): 362–72

    Article  PubMed  CAS  Google Scholar 

  41. Johanson JF, Wald A, Tougas G, et al. Effect of tegaserod in chronic constipation: a randomized, double-blind, controlled trial. Clin Gastroenterol Hepatol 2004; 2(9): 796–805

    Article  PubMed  CAS  Google Scholar 

  42. Dennis D, Palme M, Irwin I, et al. AT-7505 is a novel, selective 5-HT4 receptor agonist that causes gastrointestinal prokinetic activity in dogs [abstract]. Gastroenterology 2004; 126: A641

    Article  Google Scholar 

  43. Camilleri M, Burton D, Vazquez-Roque M, et al. Effects of a novel 5-HT4 agonist, ATI-7505, on gastrointestinal and colonic transit in humans [abstract]. Gastroenterology 2006. In press

  44. Camilleri M, McKinzie S, Fox J, et al. Effect of renzapride on transit in constipation-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol 2004; 2(10): 895–904

    Article  PubMed  CAS  Google Scholar 

  45. Meyers NL, Tack J, Middleton S, et al. Efficacy and safety of renzapride in patients with constipation predominant irritable bowel syndrome. Gut 2002; 51: A10

    Article  Google Scholar 

  46. George A, Meyers NL, Palmer RMJ. Efficacy and safety of renzapride in patients with constipation predominant IBS: a phase-lib study in the UK primary healthcare setting. Gut 2003; 52: A91

    Article  Google Scholar 

  47. Chen JJ, Li Z, Pan H, et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the highaffinity serotonin transporter: Abnormal intestinal motility and the expression of cation transporters. J Neurosci 2001; 21(16): 6348–61

    PubMed  CAS  Google Scholar 

  48. Jackson JL, O’Malley PG, Tomkins G, et al. Treatment of functional gastrointestinal disorders with antidepressant medications: a meta-analysis. Am J Med 2000; 108(1): 65–72

    Article  PubMed  CAS  Google Scholar 

  49. Quartero A, Meineche-Schmidt V, Muris J, et al. Bulking agents, antispasmodic and antidepressant medication for the treatment of irritable bowel syndrome. Cochrane Database Syst Rev 2005; (2): CD003460

  50. Guthrie E, Barlow J, Fernandes L, et al. Changes in tolerance to rectal distension correlate with changes in psychological state in patients with severe irritable bowel syndrome. Psychosom Med 2004; 66(4): 578–82

    Article  PubMed  Google Scholar 

  51. Gorard DA, Libby GW, Farthing MJ. Influence of antidepressants on whole gut and orocaecal transit times in health and irritable bowel syndrome. Aliment Pharmacol Ther 1994; 8(2): 159–66

    Article  PubMed  CAS  Google Scholar 

  52. Tack J. A placebo controlled trial of buspirone, a fundus relaxing drug, in functional dyspepsia: effect on symptoms and gastric sensory and motor functions. Gastroenterology 2000; 116: G1423

    Google Scholar 

  53. Chial HJ, Camilleri M, Ferber I, et al. Effects of venlafaxine, buspirone, and placebo on colonic sensorimotor functions in healthy humans. Clin Gastroenterol Hepatol 2003; 1(3): 211–8

    Article  PubMed  CAS  Google Scholar 

  54. Goyal RK. Muscarinic receptor subtypes: physiology and clinical implications. N Engl J Med 1989; 321(15): 1022–9

    Article  PubMed  CAS  Google Scholar 

  55. Eglen RM. Muscarinic receptors and gastrointestinal tract smooth muscle function. Life Sci 2001; 68(22–23): 2573–8

    Article  PubMed  CAS  Google Scholar 

  56. Poynard T, Regimbeau C, Benhamou Y. Meta-analysis of smooth muscle relaxants in the treatment of irritable bowel syndrome. Aliment Pharmacol Ther 2001; 15(3): 355–61

    Article  PubMed  CAS  Google Scholar 

  57. Kobayashi S, Ikeda K, Suzuki M, et al. Effects of YM905, a novel muscarinic M3-receptor antagonist, on experimental models of bowel dysfunction in vivo. Jpn J Pharmacol 2001; 86(3): 281–8

    Article  PubMed  CAS  Google Scholar 

  58. Foote J, Glavind K, Kralidis G, et al. Treatment of overactive bladder in the older patient: pooled analysis of three phase III studies of darifenacin, an M3 selective receptor antagonist. Eur Urol 2005; 48(3): 471–7

    Article  PubMed  Google Scholar 

  59. Houghton LA, Rogers J, Whorwell PJ, et al. Zamifenacin (UK-76, 654) a potent gut M3 selective muscarinic antagonist, reduces colonie motor activity in patients with irritable bowel syndrome. Aliment Pharmacol Ther 1997; 11(3): 561–8

    Article  PubMed  CAS  Google Scholar 

  60. Bharucha AE, Camilleri M, Zinsmeister AR, et al. Adrenergic modulation of human colonie motor and sensory function. Am J Physiol 1997; 273 (5 Pt 1): G997–1006

    PubMed  CAS  Google Scholar 

  61. Malcolm A, Phillips SF, Camilleri M, et al. Pharmacological modulation of rectal tone alters perception of distension in humans. Am J Gastroenterol 1997; 92(11): 2073–9

    PubMed  CAS  Google Scholar 

  62. Malcolm A, Camilleri M, Kost L, et al. Towards identifying optimal doses for alpha-2 adrenergic modulation of colonie and rectal motor and sensory function. Aliment Pharmacol Ther 2000; 14(6): 783–93

    Article  PubMed  CAS  Google Scholar 

  63. Viramontes BE, Malcolm A, Camilleri M, et al. Effects of an alpha (2)-adrenergic agonist on gastrointestinal transit, colonie motility, and sensation in humans. Am J Physiol Gastrointest Liver Physiol 2001; 281(6): G1468–76

    PubMed  CAS  Google Scholar 

  64. Camilleri M, Kim DY, McKinzie S, et al. A randomized, controlled exploratory study of clonidine in diarrhea-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol 2003; 1(2): 111–21

    Article  PubMed  CAS  Google Scholar 

  65. Borody TJ, Quigley EM, Phillips SF, et al. Effects of morphine and atropine on motility and transit in the human ileum. Gastroenterology 1985; 89(3): 562–70

    PubMed  CAS  Google Scholar 

  66. Steadman CJ, Phillips SF, Camilleri M, et al. Control of muscle tone in the human colon. Gut 1992; 33(4): 541–6

    Article  PubMed  CAS  Google Scholar 

  67. Lembo T, Naliboff BD, Matin K, et al. Irritable bowel syndrome patients show altered sensitivity to exogenous opioids. Pain 2000; 87(2): 137–47

    Article  PubMed  CAS  Google Scholar 

  68. Delvaux M, Louvel D, Lagier E, et al. The kappa agonist fedotozine relieves hypersensitivity to colonie distension in patients with irritable bowel syndrome. Gastroenterology 1999; 116(1): 38–45

    Article  PubMed  CAS  Google Scholar 

  69. Delgado-Aros S, Chial HJ, Cremonini F, et al. Effects of asimadoline, a kappa-opioid agonist, on satiation and postprandial symptoms in health. Aliment Pharmacol Ther 2003; 18(5): 507–14

    Article  PubMed  CAS  Google Scholar 

  70. Delvaux M, Beck A, Jacob J, et al. Effect of asimadoline, a kappa opioid agonist, on pain induced by colonie distension in patients with irritable bowel syndrome. Aliment Pharmacol Ther 2004; 20(2): 237–46

    Article  PubMed  CAS  Google Scholar 

  71. Wolff BG, Michelassi F, Gerkin TM, et al. Alvimopan, a novel, peripherally acting mu opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus. Ann Surg 2004; 240(4): 728–34

    PubMed  Google Scholar 

  72. Taguchi A, Sharma N, Saleem RM, et al. Selective postoperative inhibition of gastrointestinal opioid receptors. N Engl J Med 2001; 345(13): 935–40

    Article  PubMed  CAS  Google Scholar 

  73. Delaney CP, Weese JL, Hyman NH, et al. Phase III trial of alvimopan, a novel, peripherally acting, mu opioid antagonist, for postoperative ileus after major abdominal surgery. Dis Colon Rectum 2005; 48(6): 1114–25

    Article  PubMed  Google Scholar 

  74. Gonenne J, Camilleri M, Ferber I, et al. Effect of alvimopan and codeine on gastrointestinal transit: a randomized controlled study. Clin Gastroenterol Hepatol 2005; 3: 784–91

    Article  PubMed  CAS  Google Scholar 

  75. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 1991; 43(4): 425–73

    PubMed  CAS  Google Scholar 

  76. Tache Y, Monnikes H, Bonaz B, et al. Role of CRF in stressrelated alterations of gastric and colonic motor function. Ann N Y Acad Sci 1993; 697: 233–43

    Article  PubMed  CAS  Google Scholar 

  77. Greenwood-Van Meerveld B, Johnson AC, Cochrane S, et al. Corticotropin-releasing factor 1 receptor-mediated mechanisms inhibit colonie hypersensitivity in rats. Neurogastroenterol Motil 2005; 17(3): 415–22

    Article  PubMed  CAS  Google Scholar 

  78. Monnikes H, Schmidt BG, Tache Y. Psychological stress-induced accelerated colonie transit in rats involves hypothalamic corticotropin-releasing factor. Gastroenterology 1993; 104(3): 716–23

    PubMed  CAS  Google Scholar 

  79. Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin releasing hormone receptor antagonist on colonie sensory and motor function in patients with irritable bowel syndrome. Gut 2004; 53(7): 958–64

    Article  PubMed  CAS  Google Scholar 

  80. Leventer SM, Kucharik RF, Keogh JC, et al. The potential of dextofisopam for treatment of irritable bowel syndrome and inflammatory bowel disease. Am J Gastroenterol 2004; 99: S279

    Google Scholar 

  81. Leventer SM, Raudibaugh K, Frissora C, et al. The safety and efficacy of dextofisopam in patients with diarrhea-predominant or alternating irritable bowel syndrome [abstract]. Gastroenterology 2005; 128: A94

    Google Scholar 

  82. Storr M, Koppitz P, Sibaev A, et al. Melatonin reduces nonadrenergic, non-cholinergic relaxant neurotransmission by inhibition of nitric oxide synthase activity in the gastrointestinal tract of rodents in vitro. J Pineal Res 2002; 33(2): 101–8

    Article  PubMed  CAS  Google Scholar 

  83. Barajas-Lopez C, Peres AL, Espinosa-Luna R, et al. Melatonin modulates cholinergic transmission by blocking nicotinic channels in the guinea-pig submucous plexus. Eur J Pharmacol 1996; 312(3): 319–25

    Article  PubMed  CAS  Google Scholar 

  84. Storr M, Schusdziarra V, Allescher HD. Inhibition of small conductance K+ -channels attenuated melatonin-induced relaxation of serotonin-contracted rat gastric fundus. Can J Physiol Pharmacol 2000; 78(10): 799–806

    PubMed  CAS  Google Scholar 

  85. Lu WZ, Gwee KA, Moochhalla S, et al. Melatonin improves bowel symptoms in female patients with irritable bowel syndrome: a double-blind placebo-controlled study. Aliment Pharmacol Ther 2005; 22(10): 927–34

    Article  PubMed  CAS  Google Scholar 

  86. Song GH, Leng PH, Gwee KA, et al. Melatonin improves abdominal pain in irritable bowel syndrome patients who have sleep disturbances: a randomised, double blind, placebo controlled study. Gut 2005; 54(10): 1402–7

    Article  PubMed  CAS  Google Scholar 

  87. Walsh JH. Gastrointestinal hormones. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 3rd ed. New York: Raven, 1994: 49–67

    Google Scholar 

  88. Chey WY, Jin HO, Lee MH, et al. Colonie motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am J Gastroenterol 2001; 96(5): 1499–506

    Article  PubMed  CAS  Google Scholar 

  89. Wank SA. Cholecystokinin receptors. Am J Physiol 1995; 269 (5 Pt 1): G628–46

    PubMed  CAS  Google Scholar 

  90. Fourmy D, Escrieut C, Archer E, et al. Structure of cholecystokinin receptor binding sites and mechanism of activation/ inactivation by agonists/antagonists. Pharmacol Toxicol 2002; 91(6): 313–20

    Article  PubMed  CAS  Google Scholar 

  91. D’Amato M, Rovati LC. Cholecystokinin-A receptor antagonists: therapies for gastrointestinal disorders. Expert Opin Investig Drugs 1997; 6(7): 819–36

    Article  PubMed  Google Scholar 

  92. Meyer BM, Werth BA, Beglinger C, et al. Role of cholecystokinin in regulation of gastrointestinal motor functions. Lancet 1989; II(8653): 12–5

    Article  Google Scholar 

  93. Cann PA, Rovati LC, Smart HL, et al. Loxiglumide, a CCK-A antagonist, in irritable bowel syndrome: a pilot multicenter clinical study. Ann N Y Acad Sci 1994; 713: 449–50

    Article  PubMed  CAS  Google Scholar 

  94. D’Amato M, Whorwell PJ, Thompson DG. The efficacy and safety of the CCKA-receptor antagonist dexloxiglumide in IBS [abstract]. Gut 1999; 45 Suppl. V: A258

    Google Scholar 

  95. Pharmabiz.com. Forest to discontinue development in US of dexloxiglumide for irritable bowel syndrome [online]. Pharmabiz.com 2004 Oct. Available from URL: http://www.pharmabiz.com/article/detnews.asp7.articleid=18255&sectionid=14 [Accessed 2005 Aug 22]

  96. Cremonini F, Camilleri M, McKinzie S, et al. Effect of CCK-1 antagonist, dexloxiglumide, in female patients with irritable bowel syndrome: a pharmacodynamic and pharmacogenomic study. Am J Gastroenterol 2005; 100(3): 652–63

    Article  PubMed  CAS  Google Scholar 

  97. O’Donnell LJ, Watson AJ, Cameron D, et al. Effect of octreotide on mouth-to-caecum transit time in healthy subjects and in the irritable bowel syndrome. Aliment Pharmacol Ther 1990; 4(2): 177–81

    Article  PubMed  Google Scholar 

  98. Foxx-Orenstein A, Camilleri M, Stephens D, et al. Effect of a somatostatin analogue on gastric motor and sensory functions in healthy humans. Gut 2003; 52(11): 1555–61

    Article  PubMed  CAS  Google Scholar 

  99. von der Ohe MR, Camilleri M, Thomforde GM, et al. Differential regional effects of octreotide on human gastrointestinal motor function. Gut 1995; 36(5): 743–8

    Article  PubMed  Google Scholar 

  100. Schwetz I, Naliboff B, Munakata J, et al. Anti-hyperalgesic effect of octreotide in patients with irritable bowel syndrome. Aliment Pharmacol Ther 2004; 19(1): 123–31

    Article  PubMed  CAS  Google Scholar 

  101. Bradette M, Delvaux M, Staumont G, et al. Octreotide increases thresholds of colonie visceral perception in IBS patients without modifying muscle tone. Dig Dis Sci 1994; 39(6): 1171–8

    Article  PubMed  CAS  Google Scholar 

  102. Holzer P, Holzer-Petsche U. Tachykinin receptors in the gut: physiological and pathological implications. Curr Opin Pharmacol 2001; 1(6): 583–90

    Article  PubMed  CAS  Google Scholar 

  103. Holzer P, Holzer-Petsche U. Tachykinins in the gut: Part I. expression, release and motor function. Pharmacol Ther 1997; 73(3): 173–217

    CAS  Google Scholar 

  104. Moriarty D, Selve N, Baird AW, et al. Potent NK1 antagonism by SR-140333 reduces rat colonie secretory response to immunocyte activation. Am J Physiol Cell Physiol 2001; 280(4): C852–8

    PubMed  CAS  Google Scholar 

  105. Onori L, Aggio A, Taddei G, et al. Contribution of NK (2) tachykinin receptors to propulsion in the rabbit distal colon. Am J Physiol Gastrointest Liver Physiol 2000; 278(1): G137–47

    PubMed  CAS  Google Scholar 

  106. Oh-Young L, Manakata J, Naliboff B. A double-blind, parallel group pilot study of the effects o CJ-11974 and placebo on perceptual and emotional responses to rectosigmoid distension in IBS patients. Gastroenterology 2000; 118: A–846

    Google Scholar 

  107. Lordal M, Navalesi G, Theodorsson E, et al. A novel tachykinin NK2 receptor antagonist prevents motility-stimulating effects of neurokinin A in small intestine. Br J Pharmacol 2001; 134(1): 215–23

    Article  PubMed  CAS  Google Scholar 

  108. Cid LP, Montrose-Rafizadeh C, Smith DI, et al. Cloning of a putative human voltage-gated chloride channel (CIC-2) cDNA widely expressed in human tissues. Hum Mol Genet 1995; 4(3): 407–13

    Article  PubMed  CAS  Google Scholar 

  109. Catalan M, Cornejo I, Figueroa CD, et al. CIC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol 2002; 283(4): G1004–13

    PubMed  CAS  Google Scholar 

  110. Lubiprostone: RU 0211, SPI 0211. Drugs RD 2005; 6(4): 245-

  111. Johanson JF, Gargano AM, Holland PC, et al. Phase III, efficacy and safety of RU-0211 a novel chloride channel activator, for the treatment of constipation [abstract]. Gastroenterology 2003; 124: A48

    Article  Google Scholar 

  112. Johanson JF, Gargano MA, Holland PC, et al. Phase III, randomized withdrawal study of RU-0211, a novel chloride channel activator for the treatment of constipation [abstract]. Gastroenterology 2004; 126 (4 Suppl. 2): A100

    Google Scholar 

  113. Johanson JF, Gargano M, Patchen M, et al. Efficacy and safety of a novel compound, RU-0211, for the treatment of constipation [abstract]. Gastroenterology 2002; 122 (4 Suppl. 1): A315

    Google Scholar 

  114. Camilleri M, Bharucha AE, Ueno R, et al. Effect of a selective chloride channel activator, lubiprostone, on gastrointestinal transit, gastric sensory and motor functions in healthy volunteers. Am J Physiol 2006. In press

  115. FDA approves new prescription drug for adults for treatment of chronic “idiopathic” constipation [online]. Available from URL: http://www.fda.gov/bbs/topics/news/2006/NEW01305.html [Accessed 2006 Apr 3]

  116. Currie MG, Fok KF, Kato J, et al. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A 1992; 89(3): 947–51

    Article  PubMed  CAS  Google Scholar 

  117. Hamra FK, Forte LR, Eber SL, et al. Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci U S A 1993; 90(22): 10464–8

    Article  PubMed  CAS  Google Scholar 

  118. Giannella RA. Escherichia coli heat-stable enterotoxins, guanylins, and their receptors: what are they and what do they do? J Lab Clin Med 1995; 125(2): 173–81

    PubMed  CAS  Google Scholar 

  119. Forte LR. Guanylin regulatory peptides: structures, biological activities mediated by cyclic GMP and pathobiology. Regul Pept 1999; 81(1–3): 25–39

    Article  PubMed  CAS  Google Scholar 

  120. Currie MG, Kurtz C, Mahajan-Miklos S, Busby RW, Fretzen A, Geis S. Effects of single dose administration of MD-1100 on safety, tolerability, exposure, and stool consistency in healthy subjects [abstract]. Am J Gastroenterol 2005; 100 Suppl.: S328

  121. Coulie B, Szarka LA, Camilleri M, et al. Recombinant human neurotrophic factors accelerate colonie transit and relieve constipation in humans. Gastroenterology 2000; 119(1): 41–50

    Article  PubMed  CAS  Google Scholar 

  122. Parkman HP, Rao SS, Reynolds JC, et al. Neurotrophin-3 improves functional constipation. Am J Gastroenterol 2003; 98(6): 1338–47

    Article  PubMed  CAS  Google Scholar 

  123. Kim HJ, Camilleri M, McKinzie S, et al. A randomized controlled trial of a probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 2003; 17(7): 895–904

    Article  PubMed  CAS  Google Scholar 

  124. Kim HJ, Vazquez Roque MI, Camilleri M, et al. A randomized controlled trial of a probiotic combination VSL# 3 and placebo in irritable bowel syndrome with bloating. Neurogastroenterol Motil 2005; 17(5): 687–96

    Article  PubMed  CAS  Google Scholar 

  125. Nobaek S, Johansson ML, Molin G, et al. Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol 2000; 95(5): 1231–8

    Article  PubMed  CAS  Google Scholar 

  126. Niedzielin K, Kordecki H, Birkenfeld B. A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. Eur J Gastroenterol Hepatol 2001; 13(10): 1143–7

    Article  PubMed  CAS  Google Scholar 

  127. Saggioro A. Probiotics in the treatment of irritable bowel syndrome. J Clin Gastroenterol 2004; 38 (6 Suppl.): S104-6

    Google Scholar 

  128. Verdu EF, Collins SM. Irritable bowel syndrome and probiotics: from rationale to clinical use. Curr Opin Gastroenterol 2005; 21(6): 697–701

    Article  PubMed  Google Scholar 

  129. Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol 2000; 95(12): 3503–6

    Article  PubMed  CAS  Google Scholar 

  130. Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome, a double-blind, randomized, placebocontrolled study. Am J Gastroenterol 2003; 98(2): 412–9

    PubMed  Google Scholar 

  131. Nucera G, Gabrielli M, Lupascu A, et al. Abnormal breath tests to lactose, fructose and sorbitol in irritable bowel syndrome may be explained by small intestinal bacterial overgrowth. Aliment Pharmacol Ther 2005; 21(11): 1391–5

    Article  PubMed  CAS  Google Scholar 

  132. Harris LA, Crowell MD, DiBaise JK, Olden K. Is small intestinal bacterial overgrowth (SIBO) really prevalent in irritable bowel syndrome (IBS)? [abstract]. Am J Gastroenterol 2005; 100 Suppl.: S336

Download references

Acknowledgements

This article was supported in part by grants RO1-DK54681, RO1–DK67071 and K24-DK02638 (to Dr Camilleri) from the National Institutes of Health and by the Gerhardt Katsch Grant of the German Society of Digestive and Metabolic Diseases (Dr Andresen). The excellent secretarial support of Mrs Cindy Stanislav is gratefully acknowledged.

In relation to the content of this article, Dr Camilleri has served as a consultant to Novartis and GlaxoSmithKline, and has received research grants from Alizyme, Adolor, ARYx, Merck KGaA, Forest Laboratories, Sucampo, Microbia and VSL Pharmaceuticals to study pharmacodynamics of renzapride, alvimopan, ATI-5705, asimadoline, dexloxiglumide, lubiprostone, MD-1100 and VSL#3, respectively. Dr Andresen has served as a consultant to Solvay and Glaxo-SmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Andresen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andresen, V., Camilleri, M. Irritable Bowel Syndrome. Drugs 66, 1073–1088 (2006). https://doi.org/10.2165/00003495-200666080-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200666080-00004

Keywords

Navigation