Skip to main content
Log in

Dopamine Partial Agonists

A New Class of Antipsychotic

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

This review examines the development of dopamine partial agonists as a new class of antipsychotic agents. Partial agonists have a lower intrinsic activity at receptors than full agonists, allowing them to act either as a functional agonist or a functional antagonist, depending on the surrounding levels of naturally occurring neurotransmitter (full agonist). In the absence of a full agonist, partial agonists show functional agonist activity, binding to the receptor to produce a response. In the presence of a full agonist, partial agonists show functional antagonist activity, as receptor binding reduces the response from that seen with the full agonist. A partial agonist at dopamine D2 receptors therefore offers an attractive option for the treatment of schizophrenia. It should act as a functional antagonist in the mesolimbic dopamine pathway, where excessive dopamine activity is thought to cause positive symptoms, but show functional agonist activity in the mesocortical pathway, where reduced dopamine activity is thought to be associated with negative symptoms and cognitive impairment. In addition, it should avoid the complete blockade of the nigrostriatal or tuberoinfundibular pathways, associated with extrapyramidal symptoms (EPS) and elevated prolactin levels, respectively.

Clinical trials with aripiprazole — a new antipsychotic, which shows partial agonist activity at D2 receptors and serotonin 5-HT1A receptors, and antagonist activity 5-HT2A receptors — have demonstrated the value of this treatment approach. Aripiprazole produced significant improvements in positive and negative symptoms in short- and long-term studies of patients with schizophrenia or schizoaffective disorder. Improvements occurred rapidly after the start of treatment, and were sustained throughout studies lasting up to 52 weeks. Significantly more patients responded to aripiprazole treatment than to haloperidol in the 52-week study, and aripiprazole-treated patients showed significantly greater improvements in negative and depressive symptoms than those receiving haloperidol. Aripiprazole treatment was well tolerated in both short- and long-term studies, showing a low liability for EPS and hyperprolactinemia, a lack of QTc prolongation, and minimal weight gain or sedation.

In conclusion, the findings from clinical studies of aripiprazole show that dopamine partial agonists offer a novel, effective and well-tolerated treatment approach for patients with schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I

Similar content being viewed by others

References

  1. Lewis CM, Levinson DF, Wise LH, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizoprenia. Am J Hum Genet 2003; 73(1): 34–48

    Article  PubMed  CAS  Google Scholar 

  2. Coon H, Byerley W, Holik J, et al. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees. Am J Hum Genet 1993; 52: 327–34

    PubMed  CAS  Google Scholar 

  3. Harrison PJ. The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain 1999; 122 (Pt 4): 593–624

    Article  PubMed  Google Scholar 

  4. Davis KL, Kahn RS, Ko G, et al. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991; 148: 1474–86

    PubMed  CAS  Google Scholar 

  5. Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 1963; 20: 140–4

    Article  CAS  Google Scholar 

  6. Lieberman JA, Kane JM, Alvir J. Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 1987; 91: 415–33

    Article  PubMed  CAS  Google Scholar 

  7. Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 1990; 4: 2737–44

    PubMed  CAS  Google Scholar 

  8. Willner P. The dopamine hypothesis of schizophrenia: current status, future prospects. Int Clin Psychopharmacol 1997; 12: 297–308

    Article  PubMed  CAS  Google Scholar 

  9. Seeman P, Lee T, Chau-Wong M, et al. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261: 717–9

    Article  PubMed  CAS  Google Scholar 

  10. Duncan GE, Sheitman BB, Lieberman JA. An integrated view of pathophysiological models of schizophrenia. Brain Res Rev 1999; 29: 250–64

    Article  PubMed  CAS  Google Scholar 

  11. Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 1999; 13: 358–71

    Article  PubMed  CAS  Google Scholar 

  12. Mimics K, Middleton FA, Marquez A, et al. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28(1): 53–67

    Article  Google Scholar 

  13. Wong DF, Wagner Jr HN, Tune LE, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 1986; 234(4783): 1558–63

    Article  PubMed  CAS  Google Scholar 

  14. Farde L, Halldin C, Stone-Elander S, et al. PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology (Berl) 1987; 92: 278–84

    Article  CAS  Google Scholar 

  15. Farde L, Wiesel FA, Stone-Elander S, et al. D2 dopamine receptors in neuroleptic-naive schizophrenic patients: a positron emission tomography study with [11C]raclopride. Arch Gen Psychiatry 1990; 47: 213–9

    Article  PubMed  CAS  Google Scholar 

  16. Laruelle M. Imaging dopamine transmission in schizophrenia: a review and meta-analysis. Q J Nucl Med 1998; 42: 211–21

    PubMed  CAS  Google Scholar 

  17. Okubo Y, Suhara T, Suzuki K, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997; 385(6617): 634–6

    Article  PubMed  CAS  Google Scholar 

  18. Seeman P, Guan H-C, Van Tol HHM. Dopamine D4 receptors elevated in schizophrenia. Nature 1993; 365: 441–5

    Article  PubMed  CAS  Google Scholar 

  19. Lieberman JA, Mailman RB, Duncan G, et al. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 1998; 44: 1099–117

    Article  PubMed  CAS  Google Scholar 

  20. Glennon RA. Do classical hallucinogens act as 5-HT2 agonists or antagonists? Neuropsychopharmacology 1990; 3: 509–17

    PubMed  CAS  Google Scholar 

  21. Krystal JH, Seibel JP, Price LH, et al. m-Chlorophenylpiperazine effects in neuroleptic-free schizophrenic patients. Arch Gen Psychiatry 1993; 50: 624–35

    Article  PubMed  CAS  Google Scholar 

  22. Kahn RS, Siever LJ, Gabriel S, et al. Serotonin function in schizophrenia: effects of meta-chlorophenylpiperazine in schizophrenic patients and healthy subjects. Psychiatry Res 1992; 43: 1–12

    Article  PubMed  CAS  Google Scholar 

  23. Breier A, Kirkpatrick B, Buchanan RW. Clozapine attenuates metachlorophenylpiperazine (mCPP)-induced plasma cortisol increases in schizophrenia. Biol Psychiatry 1993; 34: 492–4

    Article  PubMed  CAS  Google Scholar 

  24. Koreen A, Lieberman JA, Alvir J, et al. The behavioral effect of m-chlorophenylpiperazine (mCPP) and methylphenidate in first-episode schizophrenia and normal controls. Neuropsychopharmacology 1997; 16(1): 61–8

    Article  PubMed  CAS  Google Scholar 

  25. Nocjar C, Roth BL, Pehek EA. Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 2002; 111(1): 163–76

    Article  PubMed  CAS  Google Scholar 

  26. Martin-Ruiz R, Puig MV, Celada P, et al. Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 2001; 21(24): 9856–66

    PubMed  CAS  Google Scholar 

  27. Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158: 1367–77

    Article  PubMed  CAS  Google Scholar 

  28. Moghaddam B. Bringing order to the glutamate chaos in schizophrenia. Neuron 2003; 40(5): 881–4

    Article  PubMed  CAS  Google Scholar 

  29. Duncan GE, Zorn S, Lieberman JA. Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol Psychiatry 1999; 4(5): 418–28

    Article  PubMed  CAS  Google Scholar 

  30. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001; 25(1): 1–27

    Article  PubMed  CAS  Google Scholar 

  31. Lewis DA, Pierri JN, Volk DW, et al. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 1999; 46(5): 616–26

    Article  PubMed  CAS  Google Scholar 

  32. Keverne EB. GABA-ergic neurons and the neurobiology of schizophrenia and other psychoses. Brain Res Bull 1999; 48: 467–73

    Article  PubMed  CAS  Google Scholar 

  33. Leucht S, Pitschel-Walz G, Abraham D, et al. Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo: a meta-analysis of randomized controlled trials. Schizophr Res 1999; 35: 51–68

    Article  PubMed  CAS  Google Scholar 

  34. Dickson RA, Glazer WM. Neuroleptic-induced hyperprolactinemia. Schizophr Res 1999; 35: S75–86

    Article  PubMed  Google Scholar 

  35. Meltzer HY. The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 1999; 21(2 Suppl.): 106S–15S

    PubMed  CAS  Google Scholar 

  36. Peuskens J, Bech P, Moller HJ, et al. Amisulpride vs risperidone in the treatment of acute exacerbations of schizophrenia: Amisulpride study group. Psychiatry Res 1999; 88: 107–17

    Article  PubMed  CAS  Google Scholar 

  37. Trichard C, Paillere-Martinot ML, Attar-Levy D, et al. Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am J Psychiatry 1998; 155: 505–8

    PubMed  CAS  Google Scholar 

  38. Perrault G, Depoortere R, Morel E, et al. Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 1997; 280: 73–82

    PubMed  CAS  Google Scholar 

  39. Schoemaker H, Claustre Y, Fage D, et al. Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 1997; 280: 83–97

    PubMed  CAS  Google Scholar 

  40. Boyer P, Lecrubier Y, Puech AJ, et al. Treatment of negative symptoms in schizophrenia with amisulpride. Br J Psychiatry 1995; 166: 68–72

    Article  PubMed  CAS  Google Scholar 

  41. Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry 2002; 47: 27–38

    PubMed  Google Scholar 

  42. Kapur S, Remington G. Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry 2001; 50: 873–83

    Article  PubMed  CAS  Google Scholar 

  43. Yokoi F, Grander G, Biziere K, et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography (PET) and [11C] raclopride. Neuropsychopharmacology 2002; 27(2): 248–59

    Article  PubMed  CAS  Google Scholar 

  44. Millan MJ. Improving the treatment of schizophrenia: focus on serotonin (5-HT)1A receptors. J Pharmacol Exp Ther 2000; 295: 853–61

    PubMed  CAS  Google Scholar 

  45. Stahl SM. Essential psychopharmacology: neuroscientific basis and practical applications. 2nd ed. Cambridge, UK: Cambridge University Press, 2000

    Google Scholar 

  46. Inoue A, Nakata Y. Strategy for modulation of central dopamine transmission based on the partial agonist concept in schizophrenia therapy. Jpn J Pharmacol 2001; 86: 376–80

    Article  PubMed  CAS  Google Scholar 

  47. Lahti AC, Weiler MA, Corey PK, et al. Antipsychotic properties of the partial dopamine agonist (-)-3-(3-hydroxyphenyl)-N-n-propylpiperidine (preclamol) in schizophrenia. Biol Psychiatry 1998; 43: 2–11

    Article  PubMed  CAS  Google Scholar 

  48. Tamminga CA. Partial dopamine agonists in the treatment of psychosis. J Neural Transm 2002; 109: 411–20

    Article  PubMed  CAS  Google Scholar 

  49. Benkert O, Müller-Siecheneder F, Wetzel H. Dopamine agonists in schizophrenia: a review. Eur Neuropsychopharmacol 1995; 5 Suppl.: 43–53

    Article  PubMed  CAS  Google Scholar 

  50. Inoue A, Miki S, Seto M, et al. Aripiprazole, a novel antipsychotic drug, inhibits quinpirole-evoked GTPase activity but does not up-regulate dopamine D2 receptor following repeated treatment in the rat striatum. Eur J Pharmacol 1997; 321: 105–11

    Article  PubMed  Google Scholar 

  51. Inoue T, Domae M, Yamada K, et al. Effects of the novel antipsychotic agent 7-4-[2,3-dichlorophenyl)-1-piperazinyl]-utyoxy-3,4-dihydro-2 (1H)-quinolinone (OPC-14597) on prolactin release from the rat anterior pituitary gland. J Pharmacol Exp Ther 1996; 277: 137–43

    PubMed  CAS  Google Scholar 

  52. Lawler CP, Prioleau C, Lewis MM, et al. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 1999; 20: 612–27

    Article  PubMed  CAS  Google Scholar 

  53. Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002; 302: 381–9

    Article  PubMed  CAS  Google Scholar 

  54. Kikuchi T, Tottori K, Uwahodo Y, et al. 7-4-[2,3-dichlorophenyl)-1-piperazinyl]utyoxy-3,4-dihydro-2 (1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic and postsynaptic D2 receptor antagonist activity. J Pharmacol Exp Ther 1995; 274: 329–36

    PubMed  CAS  Google Scholar 

  55. Jordan S, Koprivica V, Chen R, et al. The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HTA receptor. Eur J Pharamcol 2002; 441: 137–40

    Article  CAS  Google Scholar 

  56. McQuade RD, Burris KD, Jordan S, et al. Aripiprazole: a dopamine-serotonin system stabilizer [abstract]. Int J Neuropsychopharmacol 2002; 5Suppl. 1: S176

    Google Scholar 

  57. Shapiro DA, Rencock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28(8): 1400–11

    Article  PubMed  CAS  Google Scholar 

  58. Missale C, Nash SR, Robinson SW, et al. Dopamine receptors: from structure to function. Physiol Rev 1998; 78: 189–225

    PubMed  CAS  Google Scholar 

  59. Abilify™ (aripiprazole) tablets. Full prescribing information. Tokyo, Japan: Otsuka Pharmaceutical Co Ltd, 2002 Nov

    Google Scholar 

  60. Kane JM, Carson WH, Saha AR, et al. Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 2002; 63: 763–71

    Article  PubMed  CAS  Google Scholar 

  61. Potkin SG, Saha AR, Kujawa MJ, et al. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 2003; 60: 681–90

    Article  PubMed  CAS  Google Scholar 

  62. Casey DE, Carson WH, Saha AR, et al. Switching patients to aripiprazole from other antipsychotic agents: a multicenter randomized study. Psychopharmacology 2003; 166: 391–9

    PubMed  CAS  Google Scholar 

  63. Daniel DG, Saha AR, Ingenito G, et al. Aripiprazole, a novel antipsychotic: overview of a phase II study result [abstract]. Int J Neuropsychopharmacol 2000; 3Suppl. 1: S157

    Google Scholar 

  64. Petrie JL, Saha AR, McEvoy JP. Aripiprazole, a new novel atypical antipsychotic: phase II clinical trial result [abstract]. Eur Neuropsychopharmacol 1997; 7Suppl. 2: S227

    Article  Google Scholar 

  65. Lieberman J, Carson WH, Saha AR, et al. Meta-analysis of the efficacy of aripiprazole in schizophrenia [abstract]. Int J Neuropsychopharmacol 2002; 5Suppl. 1: S186

    Google Scholar 

  66. Pigott TA, Carson WH, Saha AR, et al. Aripiprazole for the prevention of relapse in stabilized patients with chronic schizophrenia: a placebo-controlled 26-week study. J Clin Psychiatry 2003; 64: 1048–56

    Article  PubMed  CAS  Google Scholar 

  67. Kasper S, Lerman MN, McQuade RD, et al. Efficacy and safety of aripiprazole versus haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. Int J Neuropsychopharmacol 2003; 6: 325–37

    Article  PubMed  CAS  Google Scholar 

  68. Cornblatt B, Kern RS, Carson WH, et al. Neurocognitive effects of aripiprazole versus olanzapine in stable psychosis [abstract]. Int J Neuropsychopharmacol 2002; 5Suppl. 1: S185

    Google Scholar 

  69. Marder SR, McQuade RD, Stock E, et al. Aripiprazole in the treatment of schizophrenia: safety and tolerability in short-term placebo-controlled trials. Schizophr Res 2003; 61: 123–36

    Article  PubMed  Google Scholar 

  70. Stock E, Marder SR, Saha AR, et al. Safety and tolerability meta-analysis of aripiprazole in schizophrenia [abstract]. Int J Neuropsychopharmacol 2002; 5Suppl. 1: S185

    Google Scholar 

  71. Allison DB, Mentore JL, Heo M, et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 1999; 156: 1686–96

    PubMed  CAS  Google Scholar 

  72. Aronne LJ. Epidemiology, morbidity, and treatment of overweight and obesity. J Clin Psychiatry 2001; 62 Suppl. 23: 13–22

    Google Scholar 

  73. Casey D, Saha AR, Ali MW, et al. Switching to aripiprazole monotherapy. Int J Neuropsychopharm 2002; 5Suppl. 1: S187

    Google Scholar 

  74. Hesselink MB, van Vliet BJ, Ronken E, et al. DU 127090: a novel partial dopamine agonist with antipsychotic activity. High potency but low efficacy at dopamine D2 receptors. Schizophrenia Research 2003; 60(1): 108

    Google Scholar 

  75. Van Vliet BJ, Ronken E, Tulp M, et al. DU 127090: a highly potent, atypical dopamine receptor ligand: high potency but low efficacy at dopamine D2 receptors in vitro [abstract]. Eur Neuropsychopharmacol 2000; 10 Suppl. 3: S294

  76. Long SK, Feenstra R, Kruse CG, et al. DU 127090: A highly potent, atypical dopamine receptor ligand: partial agonist character in neurochemistry assays in vivo [abstract]. Eur Neuropsychopharmacol 2000; 10Suppl. 3: S295

    Article  Google Scholar 

  77. Hesselink MB, McCreary AC, Ronken E, et al. DU127090, SLV308 and SLV318: characterisation of a chemically related class of partial dopamine agonists with varying degrees of 5-HT1A agonism. Poster presented at the 7th Congress of the European Federation of Neurological Societies; 2003 Aug 30–Sep 2; Helsinki, Finland

  78. Van Vliet BJ, Mos J, Van der Heijden JAM, et al. DU 127090: A highly potent, atypical dopamine receptor ligand — a putative potent full spectrum antipsychotic with low EPS potential [abstract]. Eur Neuropsychopharmacol 2000; 10Suppl. 3: S293

    Article  Google Scholar 

  79. Casey DE, Van Vliet BJ, Kruse CG, et al. DU 127090: A highly potent, atypical dopamine receptor ligand — behavioral effects of DU 127090 in Cebus non-human primates [abtsract]. Eur Neuropsychopharmacol 2000; 10Suppl. 3: S333

    Article  Google Scholar 

  80. Johnston LC, McCreary AC, Rose S, et al. Association between intrinsic activity and the antiparkinsonian effects of a novel dopamine D2 agonist series in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated primate model of Parkinson’s disease. Poster presented at the 7th Congress of the European Federation of Neurological Societies; 2003 Aug 30–Sep 2; Helsinki, Finland

  81. De Vries MH, Udo de Haes J, Long SK, et al. DU 127090: a highly potent, atypical dopamine receptor ligand: pilot study of dopamine D2 receptor occupancy after multiple oral administration of DU 127090 to healthy male volunteers, using 11C-raclopride by means of positron emission tomography [abstract]. Eur Neuropsychopharmacol 2000; 10Suppl. 3: S294

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Foundation of Hope of Raleigh, North Carolina, USA. Bristol Myers Squibb provided data and support for editorial assistance in the development of this review. The author is grateful to Patricia Howard, Rowan Pearce and Andrew Mayhook for their assistance. The author acknowledges the receipt of support from the following companies in the form of research grants, contracts, consulting fees and honoraria for lectures: Abbott Laboratories, Aventis, AstraZeneca, Bristol-Myers Squibb, Cyberonics, Cypress Bioscience, Eli Lilly, GlaxoSmithKline, Janssen, Novartis, Organon, Pfizer and Solvay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Lieberman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieberman, J.A. Dopamine Partial Agonists. CNS Drugs 18, 251–267 (2004). https://doi.org/10.2165/00023210-200418040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200418040-00005

Keywords

Navigation