Skip to main content
Log in

Cancer Drugs, Genetic Variation and the Glutathione-S-Transferase Gene Family

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

The glutathione-S-transferase (GST) super family comprises multiple isozymes (Alpha, Mu, Pi, Omega, Theta, and Zeta) with compelling evidence of functional polymorphic variation. Over the last two decades, a significant body of data has accumulated linking aberrant expression of GST isozymes with the development and expression of resistance to cancer drugs. Clinical correlation studies show that genetic differences within the human GST isozymes may play a role in cancer susceptibility and treatment.

The initial confusion was presented by the fact that not all drugs used to select for resistance were substrates for thioether bond catalysis by GSTs. However, recent evidence that certain GST isozymes possess the capacity to regulate mitogen activated protein kinases presents an alternative explanation. This dual functionality has contributed to the recent efforts to target GSTs with novel small molecule therapeutics.

While the ultimate success of these attempts remains to be shown, at least one drug is in late-stage clinical testing. In addition, the concept of designing new drugs that might interfere with protein:protein interactions between GSTs and regulatory kinases provides a novel approach to identify new targets in the search for cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Fig. 1

Similar content being viewed by others

References

  1. Wang AL, Tew KD. Increased glutathione-S-transferase activity in a cell line with acquired resistance to nitrogen mustards. Cancer Treat Rep 1985; 69: 677–82

    PubMed  CAS  Google Scholar 

  2. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994 Aug 15; 54(16): 4313–20

    PubMed  CAS  Google Scholar 

  3. Tew KD, Monks A, Barone L, et al. Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol Pharmacol 1996 Jul; 50(1): 149–59

    PubMed  CAS  Google Scholar 

  4. Fan M, Chambers TC. Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist Updat 2001 Aug; 4(4): 253–67

    PubMed  CAS  Google Scholar 

  5. Litwack G, Ketterer B, Arias IM. Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions. Nature 1971; 234: 466–7

    PubMed  CAS  Google Scholar 

  6. Cho SG, Lee YH, Park HS, et al. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem 2001 Apr 20; 276(16): 12749–55

    PubMed  CAS  Google Scholar 

  7. Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998; 17: 2596–606

    PubMed  CAS  Google Scholar 

  8. Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997 Jan 3; 275(5296): 90–4

    PubMed  CAS  Google Scholar 

  9. Dorion S, Lambert H, Landry J. Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione-S-transferase mu from ASK1. J Biol Chem 2002; 277: 30792–7

    PubMed  CAS  Google Scholar 

  10. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000 Oct 13; 103(2): 239–52

    PubMed  CAS  Google Scholar 

  11. Adler V, Yin Z, Fuchs SY, et al. Regulation of JNK signaling by GSTp. EMBO J 1999; 18(5): 1321–34

    PubMed  CAS  Google Scholar 

  12. Yin Z, Ivanov V, Habelhah H, et al. Glutathione S-transferase p elicits protection against hydrogen peroxide-induced cell death via coordinated regulation of stress kinases. Cancer Res 2000; 60: 4053–7

    PubMed  CAS  Google Scholar 

  13. Wang T, Arifoglu P, Ronai Z, et al. Glutathione S-transferase P1-1 (GSTP1-1 inhibits c-Jun NH2 terminal kinase (JNK1) signaling through interaction with the carboxyl terminus. J Biol Chem 2001; 276: 20999–1003

    PubMed  CAS  Google Scholar 

  14. Jakobsson PJ, Thoren S, Morgenstern R, et al. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A 1999 Jun 22; 96(13): 7220–5

    PubMed  CAS  Google Scholar 

  15. Jakobsson PJ, Morgenstern R, Mancini J, et al. Common structural features of MAPEG: a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci 1999 Mar; 8(3): 689–92

    PubMed  CAS  Google Scholar 

  16. Mannervik B, Awasthi YC, Board PG, et al. Nomenclature for human glutathione transferases. Biochem J 1992 Feb 15; 282 (Pt 1): 305–6

    PubMed  CAS  Google Scholar 

  17. Nguyen T, Liu S, Huang H, et al. Regulation of glutathione S-transferase gene expression by oxidative stress. Series Regulation of gluthatione S-transferase gene expression by oxidative stress. Vol. 133. Dublin: Elsevier Science Ltd, 2001: 7

    Google Scholar 

  18. Lo H, Ali-Osman F. The human glutathione S-transferase P1 (GSTP1) gene is transactivated by cyclic AMP (cAMP) via a cAMP response element (CRE) proximal to the transcription start site. Series The human glutathione S-transferase P1 (GSTP1) gene is transactivated by cyclic AMP (cAMP) via a cAMP response element (CRE) proximal to the transcription start site. Vol. 133. Dublin: Elseiver Science Ltd, 2001: 320–1

    Google Scholar 

  19. Desmots F, Rissel M, Loyer P, et al. Immunohistological analysis of glutathione transferase A4 distribution in several human tissues using a specific polyclonal antibody. J Histochem Cytochem 2001 Dec; 49(12): 1573–80

    PubMed  CAS  Google Scholar 

  20. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30: 445–600

    PubMed  CAS  Google Scholar 

  21. Mannervik B, Danielson UH. Glutathione transferases: structure and catalytic activity. CRC Crit Rev Biochem 1988; 23(3): 283–337

    PubMed  CAS  Google Scholar 

  22. Armstrong RN. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 1997; 10(1): 2–18

    PubMed  CAS  Google Scholar 

  23. Strange RC, Howie AF, Hume R, et al. The development expression of alpha-, mu-and pi-class glutathione S-transferases in human liver. Biochim Biophys Acta 1989; 993(2–3): 186–90

    PubMed  CAS  Google Scholar 

  24. Sundberg AG, Nilsson R, Appelkvist EL, et al. Immunohistochemical localization of alpha and pi class glutathione transferases in normal human tissues. Pharmacol Toxicol 1993 Apr-May; 72(4–5): 321–31

    PubMed  CAS  Google Scholar 

  25. Mannervik B. The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol 1985; 57: 357–417

    PubMed  CAS  Google Scholar 

  26. Knapen MF, Peters WH, Mulder TP, et al. A marker for hepatocellular damage. Lancet 2000 Apr 22; 355(9213): 1463–4

    PubMed  CAS  Google Scholar 

  27. Morel F, Rauch C, Coles B, et al. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics 2002 Jun; 12(4): 277–86

    PubMed  CAS  Google Scholar 

  28. Board PG, Webb GC. Isolation of a cDNA clone and localization of human glutathione S-transferase 2 genes to chromosome band 6p12. Proc Natl Acad Sci U S A 1987 Apr; 84(8): 2377–81

    PubMed  CAS  Google Scholar 

  29. Islam MQ, Platz A, Szpirer J, et al. Chromosomal localization of human glutathione transferase genes of classes alpha, mu and pi. Hum Genet 1989 Jul; 82(4): 338–42

    PubMed  CAS  Google Scholar 

  30. Chow NW, Whang-Peng J, Kao-Shan CS, et al. Human glutathione S-transferases: the Ha multigene family encodes products of different but overlapping substrate specificities. J Biol Chem 1988 Sep 15; 263(26): 12797–800

    PubMed  CAS  Google Scholar 

  31. Rozen F, Nguyen T, Pickett CB. Isolation and characterization of a human glutathione S-transferase Ha1 subunit gene. Arch Biochem Biophys 1992 Feb 1; 292(2): 589–93

    PubMed  CAS  Google Scholar 

  32. Suzuki T, Johnston PN, Board PG. Structure and organization of the human alpha class glutathione S-transferase genes and related pseudogenes. Genomics 1993 Dec; 18(3): 680–6

    PubMed  CAS  Google Scholar 

  33. Bredschneider M, Klein K, Murdter TE, et al. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther 2002 Jun; 71(6): 479–87

    PubMed  CAS  Google Scholar 

  34. Coles B, Nowell SA, MacLeod SL, et al. The role of human glutathione S-transferases (hGSTs) in the detoxification of the food-derived carcinogen metabolite N-acetoxy-PhIP, and the effect of a polymorphism in hGSTA1 on colorectal cancer risk. Mutat Res 2001 Oct 1; 482(1–2): 3–10

    PubMed  CAS  Google Scholar 

  35. Rhoads DM, Zarlengo RP, Tu Chen-Pei D. The basic glutathione S-transferases from human livers are products of separate genes. Biochem Biophys Res Commun 1987; 145: 474–81

    PubMed  CAS  Google Scholar 

  36. Hayes JD, Kerr LA, Cronshaw AD. Evidence of glutathione S-transferases B1 B1 and B2 B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Biochem J 1989; 264: 437–45

    PubMed  CAS  Google Scholar 

  37. Tetlow N, Liu D, Board P. Polymorphism of human alpha class glutathione transferases. Pharmacogenetics 2001 Oct; 11(7): 609–17

    PubMed  CAS  Google Scholar 

  38. Board PG. Identification of cDNAs encoding two human alpha class glutathione transferases (GSTA3 and GSTA4) and the heterologous expression of GSTA4-4. Biochem J 1998 Mar 1; 330 (Pt 2): 827–31

    PubMed  CAS  Google Scholar 

  39. Johansson AS, Mannervik B. Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones. J Biol Chem 2001 Aug 31; 276(35): 33061–5

    PubMed  CAS  Google Scholar 

  40. Martinez-Lara E, Siles E, Hernandez R, et al. Glutathione S-transferase isoenzymatic response to aging in rat cerebral cortex and cerebellum. Neurobiol Aging 2003 May-Jun; 24(3): 501–9

    PubMed  CAS  Google Scholar 

  41. Desmots F, Rissel M, Pigeon C, et al. Differential effects of iron overload on GST isoform expression in mouse liver and kidney and correlation between GSTA4 induction and overproduction of free radicles. Free Radic Biol Med 2002 Jan 1; 32(1): 93–101

    PubMed  CAS  Google Scholar 

  42. Kazi S, Ellis EM. Expression of rat liver glutathione-S-transferase GSTA5 in cell lines provides increased resistance to alkylating agents and toxic aldehydes. Chem Biol Interact 2002 May 20; 140(2): 121–35

    PubMed  CAS  Google Scholar 

  43. He NG, Singhal SS, Srivastava SK, et al. Transfection of a 4-hydroxynonenal metabolizing glutathione S-transferase isozyme, mouse GSTA4-4, confers doxorubicin resistance to Chinese hamster ovary cells. Arch Biochem Biophys 1996 Sep 1; 333(1): 214–20

    PubMed  CAS  Google Scholar 

  44. Hayes JD, Pulford DJ, Ellis EM, et al. Regulation of rat glutathione S-transferase A5 by cancer chemopreventive agents: mechanisms of inducible resistance to aflatoxin B1. Chem Biol Interact 1998 Apr 24; 111–112: 51–67

    PubMed  Google Scholar 

  45. Pulford DJ, Hayes JD. Characterization of the rat glutathione S-transferase Yc2 subunit gene, GSTA5: identification of a putative antioxidant-responsive element in the 5′-flanking region of rat GSTA5 that may mediate chemoprotection against aflatoxin B1. Biochem J 1996 Aug 15; 318 (Pt 1): 75–84

    PubMed  CAS  Google Scholar 

  46. Pearson WR, Vorachek WR, Xu SJ, et al. Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Am J Hum Genet 1993 Jul; 53(1): 220–33

    PubMed  CAS  Google Scholar 

  47. DeJong JL, Mohandas T, Tu CP. The human Hb (mu) class glutathione S-transferases are encoded by a dispersed gene family. Biochem Biophys Res Commun 1991 Oct 15; 180(1): 15–22

    PubMed  CAS  Google Scholar 

  48. Xu X, Lemaire C, Grzych JM, et al. Expression of a Schistosoma mansoni 28-kilodalton glutathione S-transferase in the livers of transgenic mice and its effect on parasite infection. Infect Immun 1997 Sep; 65(9): 3867–74

    PubMed  CAS  Google Scholar 

  49. Widersten M, Pearson WR, Engstrom A, et al. Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi. Biochem J 1991; 276: 519–24

    PubMed  CAS  Google Scholar 

  50. Smith G, Stanley LA, Sim E, et al. Metabolic polymorphisms and cancer susceptibility. Cancer Surv 1995; 25: 27–65

    PubMed  CAS  Google Scholar 

  51. McLellan RA, Oscarson M, Alexandrie AK, et al. Characterization of a human glutathione S-transferase mu cluster containing a duplicated GSTM1 gene that causes ultrarapid enzyme activity. Mol Pharmacol 1997; 52(6): 958–65

    PubMed  CAS  Google Scholar 

  52. Coughlin SS, Hall IJ. Glutathione S-transferase polymorphisms and risk of ovarian cancer: a HuGE review. Genet Med 2002 Jul-Aug; 4(4): 250–7

    PubMed  CAS  Google Scholar 

  53. Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000 Sep; 61(3): 154–66

    PubMed  CAS  Google Scholar 

  54. Lee KA, Kim SH, Woo HY, et al. Increased frequencies of glutathione S-transferase (GSTM1 and GSTT1) gene deletions in Korean patients with acquired aplastic anemia. Blood 2001 Dec 1; 98(12): 3483–5

    PubMed  CAS  Google Scholar 

  55. Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003 Feb; 33(2): 177–82

    PubMed  CAS  Google Scholar 

  56. Ambrosone CB, Sweeney C, Coles BF, et al. Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res 2001; 61: 7130–5

    PubMed  CAS  Google Scholar 

  57. Howells RE, Redman CW, Dahr KK, et al. Association of glutathione S-transferase GSTM1 and GSTT1 null genotypes with clinical outcome in epithelial ovarian cancer. Clin Cancer Res 1998; 4(10): 2439–45

    PubMed  CAS  Google Scholar 

  58. Katoh T, Nagata N, Kuroda Y, et al. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. Carcinogenesis 1996; 17(9): 1855–9

    PubMed  CAS  Google Scholar 

  59. Chenevix-Trench G, Young J, Coggan M, et al. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset. Carcinogenesis 1995 Jul; 16(7): 1655–7

    PubMed  CAS  Google Scholar 

  60. Loktionov A, Watson MA, Gunter M, et al. Glutathione-S-transferase gene polymorphisms in colorectal cancer patients: interaction between GSTM1 and GSTM3 allele variants as a risk-modulating factor. Carcinogenesis 2001; 22(7): 1053–60

    PubMed  CAS  Google Scholar 

  61. Beuckmann CT, Fujimori K, Urade Y, et al. Identification of mu-class glutathione transferases M2-2 and M3-3 as cytosolic prostaglandin E synthases in the human brain. Neurochem Res 2000 May; 25(5): 733–8

    PubMed  CAS  Google Scholar 

  62. Baez S, Segura-Aguilar J, Widersten M, et al. Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J 1997 May 15; 324 (Pt 1): 25–8

    PubMed  CAS  Google Scholar 

  63. Van Cong N, Laisney V, Gross MS, et al. Glutathione-S-transferases: tissue distribution, number of loci, polymorphism, chromosome localization. Cytogenet Cell Genet 1984; 37: 554

    Google Scholar 

  64. Campbell E, Takahashi Y, Abramovitz M, et al. A distinct human testis and brain mu-class glutathione S-transferase: molecular cloning and characterization of a form present even in individuals lacking hepatic type mu isoenzymes. J Biol Chem 1990 Jun 5; 265(16): 9188–93

    PubMed  CAS  Google Scholar 

  65. Inskip A, Elexperu-Camiruasa J, Buxton N, et al. Identification of polymorphism at the gluthathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1 *A. Biochem J 1995; 312: 713–6

    PubMed  CAS  Google Scholar 

  66. Shi Y, Lee JS, Galvin KM. Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta 1997; 1332(2): F49–66

    PubMed  CAS  Google Scholar 

  67. Yengi L, Inskip A, Gilford J, et al. Polymorphism at the Glutathione S-Transferase Locus GSTM3: interactions with cytochrome P450 and glutathione S-transferase genotypes as risk factors for multiple cutaneous basal cell carcinoma. Cancer Res 1996; 56(9): 1974–7

    PubMed  CAS  Google Scholar 

  68. Matthias C, Bockmuhl U, Jahnke V, et al. Polymorphism in cytochrome P450 CYP2D6, CYP1A1, CYP2E1 and glutathione S-transferase, GSTM1, GSTM3, GSTT1 and susceptibilty to tobacco-related cancers: studies in upper aerodigestive tract cancers. Pharmacogenetics 1998; 8(2): 91–100

    PubMed  CAS  Google Scholar 

  69. Hand PA, Inskip A, Gilford J, et al. Allelism at the glutathione S-transferase GSTM3 locus: interactions with GSTM1 and GSTT1 as risk factors for astrocytoma. Carcinogenesis 1996; 17(9): 1919–22

    PubMed  CAS  Google Scholar 

  70. Comstock KE, Johnson KJ, Rifenbery D, et al. Isolation and analysis of the gene and cDNA for a human Mu class glutathione S-transferase, GSTM4. J Biol Chem 1993 Aug 15; 268(23): 16958–65

    PubMed  CAS  Google Scholar 

  71. Ross VL, Board PG. Molecular cloning and heterologous expression of an alternatively spliced human Mu class glutathione S-transferase transcript. Biochem J 1993 Sep 1; 294 (Pt 2): 373–80

    PubMed  CAS  Google Scholar 

  72. Liloglou TWM, Laoney P, Youngson J, et al. A T2517C polymorphism in the GSTM4 gene is associated with risk of developing lung cancer. Lung Cancer 2002; 37(2): 143–6

    PubMed  Google Scholar 

  73. Kearns PR, Chrzanowska-Lightowlers ZM, Pieters R, et al. Mu class glutathione S-transferase mRNA isoform expression in acute lymphoblastic leukaemia. Br J Haematol 2003 Jan; 120(1): 80–8

    PubMed  CAS  Google Scholar 

  74. Board P, Coggan M, Chelvanayagam G, et al. Identification, characterization, and crystal structure of the omega class glutathione transferases. J Biol Chem 2000; 275(32): 24798–806

    PubMed  CAS  Google Scholar 

  75. Adam GC, Sorensen EJ, Cravatt BF. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat Biotechnol 2002 Aug; 20(8): 805–9

    PubMed  CAS  Google Scholar 

  76. Washburn MP, Wells WW. Identification of the dehydroascorbic acid reductase and thioltransferase (glutaredoxin) activities of bovine erythrocyte glutathione peroxidase. Biochem Biophys Res Commun 1999; 257: 567–71

    PubMed  CAS  Google Scholar 

  77. Dulhunty A, Gage P, Curtis S, et al. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J Biol Chem 2001; 276(5): 3319–23

    PubMed  CAS  Google Scholar 

  78. Zakharyan R, Sampayo-Reyes A, Healy SM, et al. Human monomethylarsonic acid (MMA (V) reductase is a member of the glutathione-S-transferase super-family. Chem Res Toxicol 2001; 14(8): 1051–7

    PubMed  CAS  Google Scholar 

  79. Tanaka-Kagawa T, Jinno H, Hasegawa T, et al. Functional characterization of two variant human GSTO 1-1s (Ala140Asp and Thr217Asn). Biochem Biophys Res Commun 2003 Feb 7; 301(2): 516–20

    PubMed  CAS  Google Scholar 

  80. Whitbread AK, Tetlow N, Eyre HJ, et al. Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics 2003 Mar; 13(3): 131–44

    PubMed  CAS  Google Scholar 

  81. Cowell IG, Dixon KH, Pemble SE, et al. The structure of the human glutathione S-transferase pi gene. Biochem J 1988 Oct 1; 255(1): 79–83

    PubMed  CAS  Google Scholar 

  82. Laisney V, Nguyen Van C, Gross MS, et al. Human genes for glutathione S-transferases. Hum Genet 1984; 68(3): 221–7

    PubMed  CAS  Google Scholar 

  83. Tew KD, Hartley-Asp B. Cytotoxic properties of estramustine unrelated to alkylating and steroid constituents. Urology 1984 Jun; 23(6 Suppl.): 28–33

    PubMed  CAS  Google Scholar 

  84. Moscow JA, Fairchild CR, Madden MJ, et al. Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res 1989 Mar 15; 49(6): 1422–8

    PubMed  CAS  Google Scholar 

  85. Garte S, Gaspari L, Alexandrie A-K, et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 2001; 10: 1239–48

    PubMed  CAS  Google Scholar 

  86. Lo HW, Ali-Osman F. Structure of the human allelic glutathione S-transferase-pi gene variant, hGSTP1 C, cloned from a glioblastoma multiforme cell line. Chem Biol Interact 1998 Apr 24; 111–112: 91–102

    PubMed  Google Scholar 

  87. Strange RC, Spiteri MA, Ramachandran S, et al. Glutathione-S-transferase family of enzymes. Mutat Res 2001 Oct 1; 482(1–2): 21–6

    PubMed  CAS  Google Scholar 

  88. Strange RC, Fryer AA. The glutathione S-transferases: influence of polymorphism on cancer susceptibility. IARC Sci Publ 1999; 148: 231–49

    PubMed  CAS  Google Scholar 

  89. Hemmingsen A, Fryer AA, Hepple M, et al. Simultaneous identification of GSTP1 Ile105—>Va1105 and Ala114—>Va11 14 substitutions using an amplification refractory mutation system polymerase chain reaction assay: studies in patients with asthma. Respir Res 2001; 2(4): 255–60

    PubMed  CAS  Google Scholar 

  90. Watson MA, Stewart RK, Smith GB, et al. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 1998 Feb; 19(2): 275–80

    PubMed  CAS  Google Scholar 

  91. Ramachandran S, Hoban PR, Ichii-Jones F, et al. Glutathione S-transferase GSTP1 and cyclin D1 genotypes: association with numbers of basal cell carcinomas in a patient subgroup at high-risk of multiple tumours. Pharmacogenetics 2000 Aug; 10(6): 545–56

    PubMed  CAS  Google Scholar 

  92. Goto S, Iida T, Cho S, et al. Overexpression of glutathione S-transferase pi enhances the adduct formation of cisplatin with glutathione in human cancer cells. Free Radic Res 1999 Dec; 31(6): 549–58

    PubMed  CAS  Google Scholar 

  93. Stoehlmacher J, Park DJ, Zhang W, et al. Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J Natl Cancer Inst 2002 Jun 19; 94(12): 936–42

    PubMed  CAS  Google Scholar 

  94. Ryberg D, Skaug V, Hewer A, et al. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 1997; 18: 1285–9

    PubMed  CAS  Google Scholar 

  95. Harries LW, Stubbins MJ, Forman D, et al. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997; 18: 641–4

    PubMed  CAS  Google Scholar 

  96. Maugard CM, Charrier J, Pitard A, et al. Genetic polymorphism at the glutathione S-transferase (GST) P1 locus is a breast cancer risk modifier. Int J Cancer 2001; 91(3): 334–9

    PubMed  CAS  Google Scholar 

  97. Hu X, Xia H, Srivastava SK, et al. Catalytic efficiencies of allelic variants of human glutathione S-transferase P1-1 toward carcinogenic anti-diol epoxides of benzo [c] phenanthrene and benzo [g] chrysene. Cancer Res 1998; 58(23): 5340–3

    PubMed  CAS  Google Scholar 

  98. Coggan M, Whitbread L, Whittington A, et al. Structure and organization of the human theta-class glutathione S-transferase and D-dopachrome tautomerase gene complex. Biochem J 1998 Sep 15; 334 (Pt 3): 617–23

    PubMed  CAS  Google Scholar 

  99. Tan KL, Webb GC, Baker RT, et al. Molecular cloning of a cDNA and chromosomal localization of a human theta-class glutathione S-transferase gene (GSTT2) to chromosome 22. Genomics 1995; 25(2): 381–7

    PubMed  CAS  Google Scholar 

  100. Pemble S, Schroeder KR, Spencer SR, et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 1994; 300 (Pt 1): 271–6

    PubMed  CAS  Google Scholar 

  101. Alexandrie AK, Rannug A, Juronen E, et al. Detection and characterization of a novel functional polymorphism in the GSTT1 gene. Pharmacogenetics 2002 Nov; 12(8): 613–9

    PubMed  CAS  Google Scholar 

  102. Nelson HH, Wiencke JK, Christiani DC, et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis 1995 May; 16(5): 1243–5

    PubMed  CAS  Google Scholar 

  103. Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1997 Sep; 6(9): 733–43

    PubMed  CAS  Google Scholar 

  104. Board PG, Baker RT, Chelvanayagam G, et al. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J 1997 Dec 15; 328 (Pt 3): 929–35

    PubMed  CAS  Google Scholar 

  105. Blackburn AC, Woollatt E, Sutherland GR, et al. Characterization and chromosome location of the gene GSTZ1 encoding the human Zeta class glutathione transferase and maleylacetoacetate isomerase. Cytogenet Cell Genet 1998; 83(1–2): 109–14

    PubMed  CAS  Google Scholar 

  106. Fernandez-Canon JM, Penalva MA. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J Biol Chem 1998 Jan 2; 273(1): 329–37

    PubMed  CAS  Google Scholar 

  107. Blackburn AC, Coggan M, Tzeng HF, et al. GSTZ1d: a new allele of glutathione transferase zeta and maleylacetoacetate isomerase. Pharmacogenetics 2001 Nov; 11(8): 671–8

    PubMed  CAS  Google Scholar 

  108. Blackburn AC, Tzeng HF, Anders MW, et al. Discovery of a functional polymorphism in human glutathione transferase zeta by expressed sequence tag database analysis. Pharmacogenetics 2000; 10(1): 49–57

    PubMed  CAS  Google Scholar 

  109. Board P, Chelvanayagam G, Jermiin LS, et al. Identification of novel glutathione transferases and polymorphic variants by expressed sequence tag database analysis. Drug Metab Dispos 2001; 29(4): 544–7

    PubMed  CAS  Google Scholar 

  110. Tzeng HF, Blackburn AC, Board PG, et al. Polymorphism- and species-dependent inactivation of glutathione transferase zeta by dichloroacetate. Chem Res Toxicol 2000 Apr; 13(4): 231–6

    PubMed  CAS  Google Scholar 

  111. Howells RE, Holland T, Dhar KK, et al. Glutathione S-transferase GSTM1 and GSTT1 genotypes in ovarian cancer: association with p53 expression and survival. Int J Gynecol Cancer 2001; 11(2): 107–12

    PubMed  CAS  Google Scholar 

  112. Davies SM, Robison LL, Buckley JD, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol 2001; 19(5): 1279–87

    PubMed  Google Scholar 

  113. Stanulla M, Schrappe M, Brechlin AM, et al. Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood 2000; 95(4): 1222–8

    PubMed  CAS  Google Scholar 

  114. Lin X, Tascilar M, Lee WH, et al. GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol 2001 Nov; 159(5): 1815–26

    PubMed  CAS  Google Scholar 

  115. Lee WH, Morton RA, Epstein JI, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 1994 Nov 22; 91(24): 11733–7

    PubMed  CAS  Google Scholar 

  116. Jeronimo C, Varzim G, Henrique R, et al. I105V polymorphism and promoter methylation of the GSTP1 gene in prostate adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2002 May; 11(5): 445–50

    PubMed  CAS  Google Scholar 

  117. Bakker J, Lin X, Nelson WG. Methyl-CpG binding domain protein 2 represses transcription from hypermethylated pi-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. J Biol Chem 2002 Jun 21; 277(25): 22573–80

    PubMed  CAS  Google Scholar 

  118. Neal T, Wright LS, Siegel FL. Identification of glutathione S-transferase as a substrate and glutathione as an inhibitor of in vitro calmodulin-stimulated protein methylation in rat liver cytosol. Biochem Biophys Res Commun 1988; 156(1): 368–74

    PubMed  CAS  Google Scholar 

  119. Johnson JA, Finn KA, Siegel FL. Tissue distribution of enzymic methylation of glutathione S-transferase and its effects on catalytic activity: methylation of glutathione S-transferase 11-11 inhibits conjugating activity towards 1-chloro-2,4-dinitrobenzene. Biochem J 1992 Feb 15; 282 (Pt 1): 279–89

    PubMed  CAS  Google Scholar 

  120. Kuzmich S, Vanderveer LA, Tew KD. Evidence for a glycoconjugate form of glutathione S-transferase pi. Int J Pept Protein Res 1991; 37: 565–71

    PubMed  CAS  Google Scholar 

  121. Tew KD, Bomber AM, Hoffman SJ. Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Res 1988 Jul 1; 48(13): 3622–5

    PubMed  CAS  Google Scholar 

  122. Hall A, Robson CN, Hickson ID, et al. Possible role of inhibition of glutathione S-transferase in the partial reversal of chlorambucil resistance by indomethacin in a Chinese hamster ovary cell line. Cancer Res 1989 Nov 15; 49(22): 6265–8

    PubMed  CAS  Google Scholar 

  123. Ford JM, Hait WN, Matlin SA, et al. Modulation of resistance to alkylating agents in cancer cell by gossypol enantiomers. Cancer Lett 1991 Jan; 56(1): 85–94

    PubMed  CAS  Google Scholar 

  124. Oakley AJ, Lo Bello M, Mazzetti AP, et al. The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Lett 1997 Dec 8; 419(1): 32–6

    PubMed  CAS  Google Scholar 

  125. Mulder TP, Peters WH, Wobbes T, et al. Measurement of glutathione S-transferase P1-1 in plasma: pitfalls and significance of screening and follow-up of patients with gastrointestinal carcinoma. Cancer 1997 Sep 1; 80(5): 873–80

    PubMed  CAS  Google Scholar 

  126. Clapper ML, Hoffman SJ, Tew KD. Sensitization of human colon tumor xenografts to L-phenylalanine mustard using ethacrynic acid. J Cell Pharmacol 1990; 1: 71–8

    CAS  Google Scholar 

  127. O’Dwyer PJ, LaCreta F, Nash S, et al. Phase I study of thiotepa in combination with the glutathione transferase inhibitor ethacrynic acid. Cancer Res 1991 Nov 15; 51(22): 6059–65

    PubMed  Google Scholar 

  128. Schisselbauer JC, Silber R, Papadopoulos E, et al. Characterization of lymphocyte glutathione S-transferase isozymes in chronic lymphocytic leukemia (CLL). Cancer Res 1990; 50: 3569–73

    Google Scholar 

  129. Petrini M, Conte A, Caracciolo F, et al. Reversing of chlorambucil resistance by ethacrynic acid in a B-CLL patient. Br J Haematol 1993 Oct; 85(2): 409–10

    PubMed  CAS  Google Scholar 

  130. Lyttle MH, Docker MD, Hui HC, et al. Isozyme-specific glutathione S-transferase inhibitors: design and synthesis. J Med Chem 1994; 37: 189–94

    PubMed  CAS  Google Scholar 

  131. Lyttle MH, Satyam A, Hocker MD, et al. Glutathione-S-transferase activates novel alkylating agents. J Med Chem 1994 May 13; 37(10): 1501–7

    PubMed  CAS  Google Scholar 

  132. Morgan AS, Ciaccio PJ, Tew KD, et al. Isozyme-specific glutathione S-transferase inhibitors potentiate drug sensitivity in cultured human tumor cell lines. Cancer Chemother Pharmacol 1996; 37(4): 363–70

    PubMed  CAS  Google Scholar 

  133. O’Brien ML, Vulevic B, Freer S, et al. Glutathione peptidomimetic drug modulator of multidrug resistance-associated protein. J Pharmacol Exp Ther 1999 Dec; 291(3): 1348–55

    PubMed  Google Scholar 

  134. Ruscoe JE, Rosario LA, Wang T, et al. Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferation pathways. J Pharmacol Exp Ther 2001 Jul; 298(1): 339–45

    PubMed  CAS  Google Scholar 

  135. Carver-Moore K, Broxmeyer HE, Luoh SM, et al. Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 1996 Aug 1; 88(3): 803–8

    PubMed  CAS  Google Scholar 

  136. DeCampo R, Moreno SNJ. Free radical intermediates in the anitparasitic action of drugs and phagocytic cells. Free Radic Biol 1984; VI: 243–88

    Google Scholar 

  137. Davioud-Charvet E, Delarue S, Biot C, et al. A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J Med Chem 2001 Nov 22; 44(24): 4268–76

    PubMed  CAS  Google Scholar 

  138. Harwaldt P, Rahlfs S, Becker K. Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target. Biol Chem 2002 May; 383(5): 821–30

    PubMed  CAS  Google Scholar 

  139. Capron A, Riveau G, Grzych JM, et al. Development of a vaccine strategy against human and bovine schistosomiasis: background and update. Mem Inst Oswaldo Cruz 1995 Mar–Apr; 90(2): 235–40

    PubMed  CAS  Google Scholar 

  140. Nare B, Smith JM, Prichard RK. Mechanisms of inactivation of Schistosoma mansoni and mammalian glutathione S-transferase activity by the antischistosomal drug oltipraz. Biochem Pharmacol 1992 Mar 17; 43(6): 1345–51

    PubMed  CAS  Google Scholar 

  141. Capron A, Capron M, Dombrowicz D, et al. Vaccine strategies against schistosomiasis: from concepts to clinical trials. Int Arch Allergy Immunol 2001 Jan–Mar; 124(1–3): 9–15

    PubMed  CAS  Google Scholar 

  142. Gunnarsdottir S, Elfarra AA. Glutathione-dependent metabolism of cis-3-(9H-purin-6-ylthio)acrylic acid to yield the chemotherapeutic drug 6-mer-captopurine: evidence for two distinct mechanisms in rats. J Pharmacol Exp Ther 1999 Sep; 290(3): 950–7

    PubMed  CAS  Google Scholar 

  143. Kauvar KM. GST: targeted candidates. In: Vermeulen NPE, Mulder GJ, Niewenhuyse H, et al., editors. Glutathione-S-transferases structure, function and clinical implications. London: Taylor &Francis, 1996: 187–98

    Google Scholar 

  144. Morgan AS, Sanderson PE, Borch RF, et al. Tumor efficacy and bone marrow sparing properties of TER286, a cytotoxin activated by glutathione S-transferase. Cancer Res 1998; 58: 2568–75

    PubMed  CAS  Google Scholar 

  145. Rosario LA, O’Brien ML, Henderson CJ, et al. Cellular response to a glutathione S-transferase P1-1 activated prodrug. Mol Pharmacol 2000; 58(1): 167–74

    PubMed  CAS  Google Scholar 

  146. Izbicka E, Lawrence R, Cerna C, et al. Activity of TER286 against human tumor colony-forming units. Anticancer Drugs 1997 Apr; 8(4): 345–8

    PubMed  CAS  Google Scholar 

  147. Rosen LS, Brown J, Lux B, et al. Phase I study of TLK286 (glutathione s-transferase P1-1 activated glutathione analogue) in advanced refractory solid malignancies. Clin Cancer Res 2003 May; 9(5): 1628–38

    PubMed  CAS  Google Scholar 

  148. Henner WD, Figlin RA, Garland LL, et al. Phase 2 study of TLK286 (GST P1-1 activated glutathione analog) in advanced non-small cell lung cancer (NSCLC) [abstract]. 38th Annual Meeting of the American Society of Clinical Oncology; 2002 May 18–21; Orlando (FL)

  149. Kavanagh JJ, Spriggs D, Bookman M, et al. Phase 2 study of TLK286 (GST P1-1 activated glutathione analog) in patients with platinum resistant epithelial ovarian cancer. In: Series phase 2 study of TLK286 (GST P1-1 activated glutathione analog) in patients with platinum resistant epithelial ovarian cancer [abstract 831]. 38th Annual Meeting of the American Society of Clinical Oncology; 2002 May 18–21; Orlando (FL)

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Tew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Townsend, D.M., Tew, K.D. Cancer Drugs, Genetic Variation and the Glutathione-S-Transferase Gene Family. Am J Pharmacogenomics 3, 157–172 (2003). https://doi.org/10.2165/00129785-200303030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303030-00002

Keywords

Navigation