Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate

Br J Cancer. 1999 Jun;80(8):1252-8. doi: 10.1038/sj.bjc.6690493.

Abstract

A series of hydroxamates, which are not metalloprotease inhibitors, have been found to be selectively toxic to a range of transformed and human tumour cells without killing normal cells (fibroblasts, melanocytes) at the same concentrations. Within 24 h of treatment, drug action is characterized by morphological reversion of tumour cells to a more normal phenotype (dendritic morphology), and rapid and reversible acetylation of histone H4 in both tumour and normal cells. Two hydroxamates inhibited growth of xenografts of human melanoma cells in nude mice; resistance did not develop in vivo or in vitro. A third hydroxamate, trichostatin A, was active in vitro but became inactivated and had no anti-tumour activity in vivo. Development of dendritic morphology was found to be dependent upon phosphatase activity, RNA and protein synthesis. Proliferating hybrid clones of sensitive and resistant cells remained sensitive to ABHA, indicating a dominant-negative mechanism of sensitivity. Histone H4 hyperacetylation suggests that these agents act at the chromatin level. This work may lead to new drugs that are potent, and selective anti-tumour agents with low toxicity to normal cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation / drug effects
  • Cell Survival
  • Dendritic Cells / drug effects
  • Dendritic Cells / physiology
  • Drug Screening Assays, Antitumor
  • Humans
  • Hydroxamic Acids / pharmacology*
  • Melanoma / pathology*
  • Mice
  • Mice, Nude
  • Skin Neoplasms / pathology*
  • Transplantation, Heterologous
  • Tumor Cells, Cultured / drug effects
  • Tumor Stem Cell Assay

Substances

  • Hydroxamic Acids