Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways

Am J Physiol Gastrointest Liver Physiol. 2015 May 1;308(9):G757-66. doi: 10.1152/ajpgi.00442.2014. Epub 2015 Mar 12.

Abstract

Hepatic zinc deficiency has been well documented in alcoholic patients, but the mechanisms by which zinc deficiency mediates cell death have not been well defined. The objectives of this study were to determine whether alcohol perturbs subcellular zinc homeostasis and how organelle zinc depletion may link with cell death pathways. Wistar rats were pair-fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure significantly reduced zinc level in isolated hepatic endoplasmic reticulum (ER) and mitochondria. Among the detected zinc transporters, ER Zrt/Irt-like protein (ZIP)13 and mitochondrial ZIP8, which transport zinc from ER and mitochondria to cytosol, were significantly increased. Mitochondrial zinc transporter (ZnT) 4, which transports zinc from cytosol to mitochondria, was also increased. ER phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4, and C/EBP homologous protein were significantly upregulated, and mitochondrial cytochrome c release and Bax insertion were detected in association with caspase-3 activation and apoptotic cell death. To define the role of zinc deficiency in ER and mitochondrial stress, H4IIEC3 cells were treated with 3 μM N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine for 6 h with or without supplementation with zinc or N-acetylcysteine (NAC). The results demonstrated that zinc deprivation induced caspase-3 activation and apoptosis in association with ER and mitochondria dysfunction, which were inhibited by zinc as low as 10 μM but not by 2 mM NAC. These results suggest that chronic ethanol exposure induced in ER and mitochondrial zinc deficiency might activate intrinsic cell death signaling pathway, which could not be effectively rescued by antioxidant treatment.

Keywords: alcoholic liver disease; apoptosis; endoplasmic reticulum; mitochondria; zinc.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Activating Transcription Factor 4 / metabolism
  • Animals
  • Antioxidants / pharmacology
  • Apoptosis* / drug effects
  • Carrier Proteins / metabolism
  • Caspase 3 / metabolism
  • Cation Transport Proteins / metabolism
  • Cell Line, Tumor
  • Chelating Agents / pharmacology
  • Deficiency Diseases / blood
  • Deficiency Diseases / etiology*
  • Deficiency Diseases / pathology
  • Disease Models, Animal
  • Endoplasmic Reticulum / drug effects
  • Endoplasmic Reticulum / metabolism*
  • Endoplasmic Reticulum / pathology
  • Ethanol*
  • Eukaryotic Initiation Factor-2 / metabolism
  • Liver / drug effects
  • Liver / metabolism*
  • Liver / pathology
  • Liver Diseases, Alcoholic / blood
  • Liver Diseases, Alcoholic / etiology*
  • Liver Diseases, Alcoholic / pathology
  • Male
  • Membrane Transport Proteins
  • Mitochondria, Liver / drug effects
  • Mitochondria, Liver / metabolism*
  • Mitochondria, Liver / pathology
  • Oxidative Stress
  • Phosphorylation
  • Rats, Wistar
  • Reactive Oxygen Species / metabolism
  • Time Factors
  • Transcription Factor CHOP / metabolism
  • Zinc / blood
  • Zinc / deficiency*

Substances

  • Antioxidants
  • Atf4 protein, rat
  • Carrier Proteins
  • Cation Transport Proteins
  • Chelating Agents
  • Ddit3 protein, rat
  • Eukaryotic Initiation Factor-2
  • Membrane Transport Proteins
  • Reactive Oxygen Species
  • Slc30a4 protein, rat
  • Slc39a8 protein, rat
  • Activating Transcription Factor 4
  • Transcription Factor CHOP
  • Ethanol
  • Casp3 protein, rat
  • Caspase 3
  • Zinc