Abstract
5-Iodo-2'-deoxy-L-uridine (L-IdU) and (E)-5-(2-bromovinyl)-2'-deoxy-L-uridine (L-BVdU) have been prepared and found to inhibit herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) with activities comparable to those of their analogs with the natural D-sugar configuration. The mechanism of inhibition is purely competitive for L-IdU (Ki = 0.24 microM) and mixed-type for L-BVdU (Ki = 0.13 microM). High performance liquid chromatographic analysis of the reaction products demonstrated that the viral enzyme phosphorylates both L-enantiomers to their corresponding monophosphates with efficiency comparable to that for D-enantiomers. Neither L-enantiomer inhibits the human cytosolic TK. In contrast to their D-enantiomers, L-IdU and L-BVdU have no effect on human thymidylate synthase, either in HeLa cells or in TK-deficient HeLa cells transformed with the HSV-1 TK gene. Both L-enantiomers (i) have no effect on HeLa cell growth, (ii) are 1000-fold less cytotoxic toward TK-deficient HeLa cells transformed with the HSV-1 TK gene than are their D-enantiomers, (iii) in contrast to their D-enantiomers, are fully resistant to hydrolysis by nucleoside phosphorylase, and, (iv) in spite of their much lower cytotoxicity, most probably due to the very low affinity of L-BVdU monophosphate and L-IdU monophosphate for thymidylate synthase, are only 1 or 2 orders of magnitude less potent than their D-enantiomers in inhibiting viral growth, with potency comparable to that of acyclovir.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|