Abstract
Stimulation of the β2-adrenergic receptor (β2AR) in human embryonic kidney (HEK) 293 cells causes a transient activation of Extracellular Signal-Regulated Kinase (ERK) 1/2. One of the mechanisms proposed for this activation is a PKA-mediated phosphorylation of the β2AR that switches receptor coupling from Gs to Gi and triggers internalization of the receptor. To examine these phenomena, we characterized agonist activation of ERK1/2 in HEK293 cells by the endogenous β2AR and in HEK293 cells stably overexpressing either the wild-type β2AR or a substitution mutant β2AR (PKA−) that lacks the cyclic AMP-dependent protein kinase (PKA) consensus phosphorylation sites (S261A, S262A and S345A, S346A). As the baseline, we established that epinephrine stimulation of the endogenous β2AR in HEK293 cells (20–30 fmol/mg) caused a rapid and transient activation of ERK1/2 with an EC50 of 5 to 6 nM. In contrast, the potency of epinephrine stimulation of ERK1/2 in cells stably overexpressing WTβ2AR and PKA− (2–4 pmol of β2AR/mg) was increased by over 100-fold relative to HEK293 cells, the EC50 values being 20 to 60 pM. The nearly identical 100-fold shift in EC50 for ERK1/2 activation in the PKA− and WTβ2AR relative to that in the HEK293 showed that the PKA− are fully capable of activating ERK1/2. We also found maximal activation of ERK1/2 in the overexpressing cell lines at concentrations of epinephrine that cause no internalization (i.e., the EC50 for internalization was 75 nM). Pertussis toxin pretreatment caused only a weak inhibition of epinephrine activation of ERK1/2 in the HEK293 (7–16%) and no inhibition in the PKA− cells. Finally we found that the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (10 μM) caused a >90% inhibition of epinephrine or forskolin activation of ERK1/2 in both cell lines. Our results indicate that the dominant mechanism of β2AR activation of ERK1/2 does not require PKA phosphorylation of the β2AR, receptor internalization or switching from activation of Gs to Gi but clearly requires activation of a Src family member that may be downstream of PKA.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|