Abstract
p53 is a Zn2+-dependent tumor suppressor inactivated in >50% of human cancers. The most common mutation, R175H, inactivates p53 by reducing its affinity for the essential zinc ion, leaving the mutant protein unable to bind the metal in the low [Zn2+]free environment of the cell. The exploratory cancer drug zinc metallochaperone-1 (ZMC1) was previously demonstrated to reactivate this and other Zn2+-binding mutants by binding Zn2+ and buffering it to a level such that Zn2+ can repopulate the defective binding site, but how it accomplishes this in the context of living cells and organisms is unclear. In this study, we demonstrated that ZMC1 increases intracellular [Zn2+]free by functioning as a Zn2+ ionophore, binding Zn2+ in the extracellular environment, diffusing across the plasma membrane, and releasing it intracellularly. It raises intracellular [Zn2+]free in cancer (TOV112D) and noncancer human embryonic kidney cell line 293 to 15.8 and 18.1 nM, respectively, with half-times of 2–3 minutes. These [Zn2+]free levels are predicted to result in ∼90% saturation of p53-R175H, thus accounting for its observed reactivation. This mechanism is supported by the X-ray crystal structure of the [Zn(ZMC1)2] complex, which demonstrates structural and chemical features consistent with those of known metal ionophores. These findings provide a physical mechanism linking zinc metallochaperone-1 in both in vitro and in vivo activities and define the remaining critical parameter necessary for developing synthetic metallochaperones for clinical use.
Footnotes
- Received December 22, 2014.
- Accepted February 20, 2015.
This work was supported by grants from the National Institutes of Health National Cancer Institute [Grant K08-CA172676-02], the Breast Cancer Research Foundation, the Harrington Discovery Institute, and the Sidney Kimmel Foundation for Cancer Research to D.R.C., the Carol M. Baldwin Breast Cancer Research Award to S.N.L., and the National Institutes of Health National Institute of General Medical Sciences [Grant R01-GM088403] to L.M.
↵This article has supplemental material available at molpharm.asetjournals.org.
- Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|