Abstract
The source of the oxygen atom in the product of the cytochrome P-450-catalyzed N-demethylation of N-methylcarbazole was determined by mass spectral analysis of the carbinolamine precursor of formaldehyde formed during incubation in oxygen 18-enriched medium. Initial experiments demonstrated that N-(hydroxymethyl)carbazole, the carbinolamine product of the metabolism of N-methylcarbazole, did not exchange oxygen with solvent water. When N-methylcarbazole was incubated in oxygen 18-enriched medium with purified cytochrome P-450 in the presence of either purified NADPH-cytochrome P-450 reductase and NADPH, cumene hydroperoxide, t-butyl hydroperoxide, or peracetic acid, there was no incorporation of oxygen 18 from the medium into N-(hydroxymethyl)carbazole. These results clearly demonstrate that the oxygen atom inserted into N-methylcarbazole by cytochrome P-450 to yield N-(hydroxymethyl)carbazole does not come from the medium and show that the N-demethylation reactions catalyzed by cytochrome P-450 proceed in a manner similar to hydroxylation reactions, with the oxygen atom in the product being derived from the oxidant.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|