Abstract
Palytoxin, isolated from the zoanthid Palytoha species, is one of the most potent marine toxins. Palytoxin (1 nM-1 microM) caused a release of [3H]norepinephrine from clonal rat pheochromocytoma cells in a concentration-dependent manner. This releasing action of palytoxin was markedly inhibited or abolished by Co2+ or Ca2+ -free medium, but was not modified by tetrodotoxin. The release of [3H]norepinephrine induced by a low concentration (30 nM) of palytoxin was abolished in sodium-free medium and increased as the external Na+ concentrations were increased from 3 to 100 nM, but the release induced by a high concentration (1 microM) was unaffected by varying the concentration of external Na+ from 0 to 100 mM. The release of [3H]norepinephrine induced by both concentrations of palytoxin increased with increasing Ca2+ concentrations from 0 to 3 mM. Palytoxin caused a concentration-dependent increase in 22Na and 45Ca influxes into pheochromocytoma cells at concentrations of 0.1 nM-10 nM and 1 nM-1 microM, respectively. The palytoxin-induced 45Ca influx was markedly inhibited by Co2+, whereas the palytoxin-induced 22Na influx was not affected by tetrodotoxin. These results suggest that in pheochromocytoma cells the [3H]norepinephrine release induced by lower concentrations of palytoxin is primarily brought about by increasing tetrodotoxin-insensitive Na+ permeability across the cell membrane, whereas that induced by higher concentrations is mainly caused by a direct increase in Ca2+ influx into them.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|