Abstract
2-Bromo-(diglutathion-S-yl)hydroquinone [2-Br-(diGSyl)HQ] causes severe necrosis of the proximal renal tubules in the rat, elevations in blood urea nitrogen (BUN) and increased urinary excretion of protein, glucose, and lactate dehydrogenase. In contrast, 2-Br-3-(GSyl)HQ, 2-Br-5-(GSyl)HQ, and 2-Br-6-(GSyl)HQ caused differentially less toxicity than the diglutathionyl conjugate. None of these conjugates had any apparent effect on liver pathology and serum glutamate-pyruvate transaminase remained within the normal range. Pretreatment of rats with probenecid, an organic anion transport inhibitor, offered only slight protection against 2-Br-(diGSyl)HQ-mediated elevations in BUN, proteinuria, or glucosuria. In contrast, quinine, an organic cation transport inhibitor, potentiated the nephrotoxicity of 2-Br-(di-GSyl)HQ. Thus, in contrast to other nephrotoxic sulfur conjugates, probenecid-sensitive organic ion transport systems do not contribute to the kidney-specific toxicity of 2-Br-(diGSyl)HQ. However, inhibition of renal gamma-glutamyl transpeptidase by AT-125 completely protected rats from the nephrotoxic effects of 2-Br-(diGSyl)HQ. Aminooxyacetic acid, an inhibitor of cysteine conjugate beta-lyase, caused a 20-25% decrease in 2-Br-(diGSyl)HQ-mediated elevations in BUN and urinary excretion parameters. The isomeric 35S conjugates covalently bound to rat kidney 10,000 x g homogenate in the order 2-Br-6-(GSyl)HQ greater than 2-Br-5-(GSyl)HQ greater than 2-Br-3-(GSyl)HQ greater than 2-Br-(diGSyl)HQ. AT-125 (0.4 mM) decreased covalent binding by 25%, 17%, 33%, and 28%, respectively. Aminooxyacetic acid (0.1 mM) inhibited covalent binding by 26%, 10%, 17%, and 17% respectively. Ascorbic acid (1.0 mM) inhibited covalent binding by 63%, 87%, 62%, and 28%, respectively, and this inhibition correlated, inversely, with the redox potential of the conjugates. Thus, the covalent binding is mediated preferentially by oxidation of the quinol moiety, although the formation of reactive thiols cannot be excluded. In addition, the initial conjugation of 2-BrHQ with GSH does not result in the formation of a less redox-active species. However, the subsequent addition of a second molecule of GSH results in the formation of a more redox-stable compound, which, paradoxically, enhances toxicity. The metabolism of 2-Br-(diGSyl)HQ by renal proximal tubular gamma-glutamyl transpeptidase and trans-membrane transport of the cysteine conjugate(s) followed by oxidation of the quinol moiety is probably responsible for the target organ toxicity of this compound.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|