Abstract
Addition of quisqualate to mouse hippocampal neurons in vitro elicited two types of changes in [Ca2+]i as assessed by fura-2-based microfluorimetry. The first was a transient spike or group of oscillations and the second was a long lasting "plateau" response. The long-lasting response was abolished on removal of either Ca2+ or Na+ from the external medium or by blocking voltage-sensitive Ca2+ channels. Furthermore, the novel glutamate antagonist 6-nitro-7-cyano-quinoxaline-2,3-dione was a competitive inhibitor of this response. In contrast, none of these manipulations abolished the transient [Ca2+]i spike. Transient [Ca2+]i spikes or oscillations could also be produced by the alpha 1-adrenergic agonist phenylephrine. Production of such an alpha 1-response reduced the size of a subsequently elicited quisqualate response. However production of transient [Ca2+]i spikes with caffeine did not alter the size of the quisqualate-induced spike. We conclude that hippocampal neurons possess two different types of quisqualate receptors. The first mediates quisqualate-induced depolarization and the second mediates Ca2+ mobilization from intracellular stores.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|