Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • For Subscribers
    • For Advertisers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Beta 1- and beta 2-adrenergic receptors display subtype-selective coupling to Gs.

S A Green, B D Holt and S B Liggett
Molecular Pharmacology May 1992, 41 (5) 889-893;
S A Green
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B D Holt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S B Liggett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

beta-Adrenergic receptor (beta AR) subtypes differ in their affinities for some agonists and antagonists and thus may potentially impart different cellular effects based on this ligand-binding specificity. However, the possibility that there may be subtype-specific events subsequent to ligand binding has not been evaluated extensively. In particular, although beta ARs stimulate adenylyl cyclase by coupling to the guanine nucleotide-binding protein Gs, no studies have directly assessed the coupling efficiencies among isolated beta AR subtypes. We, therefore, permanently transfected the mammalian fibroblast cell line CHW-1102 with beta 1- or beta 2AR cDNAs and studied the coupling characteristics of these two receptor subtypes, each expressed at approximately 335 fmol/mg of protein. Both receptors mediated equivalent maximal increases in adenylyl cyclase activities (6.63 +/- 1.85-fold for beta 1AR versus 6.10 +/- 0.53-fold for beta 2AR; p = not significant). However, the isoproterenol dose-response curves for the beta 2AR were shifted to the left, compared with those for the beta 1AR (EC50 of 52.3 +/- 2.87 nM and 191 +/- 10.5 nM, respectively; p less than 0.05), resulting in an approximately 4-fold greater potency for the beta 2AR versus the beta 1AR. Thus, at the submaximal isoproterenol concentration of 30 nM, the beta 2AR stimulated adenylyl cyclase approximately 50% more than did the beta 1AR. This finding was not due to a difference in the affinities of isoproterenol for these receptors, which were found to be the same, as determined by competition binding studies with 125I-cyanopindolol in the presence of GTP. The ability of beta 1- and beta 2ARs to form the high affinity ternary complex was assessed in agonist competition studies without guanine nucleotide. We found that, whereas the proportion of receptors in the high affinity state was equivalent between the two receptor subtypes, the affinity of this state for isoproterenol was approximately 5-fold greater for the beta 2AR, compared with the beta 1AR (KH for beta 2AR, 11.8 +/- 3.1 nM; KH for beta 1AR, 61.7 +/- 18.3 nM; p less than 0.05). In addition, we examined physical and functional coupling of beta 1- and beta 2ARs to Gs using the agonist epinephrine, which also has equal binding affinity for both receptor subtypes. As with isoproterenol, epinephrine was more potent in stimulating adenylyl cyclase and promoted a higher affinity ternary complex for the beta 2AR. Thus, a greater degree of both physical and functional agonist-promoted coupling occurs between Gs and beta 2AR, compared with beta 1AR. We conclude that coupling to Gs by beta 1- and beta 2ARs is subtype selective and is a potentially important distinguishing feature among these members of the beta AR family.

Log in using your username and password

Forgot your user name or password?

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00

Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 41, Issue 5
1 May 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Beta 1- and beta 2-adrenergic receptors display subtype-selective coupling to Gs.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
Citation Tools
Abstract

Beta 1- and beta 2-adrenergic receptors display subtype-selective coupling to Gs.

S A Green, B D Holt and S B Liggett
Molecular Pharmacology May 1, 1992, 41 (5) 889-893;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Beta 1- and beta 2-adrenergic receptors display subtype-selective coupling to Gs.

S A Green, B D Holt and S B Liggett
Molecular Pharmacology May 1, 1992, 41 (5) 889-893;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2019 by the American Society for Pharmacology and Experimental Therapeutics