Abstract
Halothane has been reported to sensitize the myocardium towards the effects of exogenous catecholamines in patients and laboratory animals. This study was aimed at investigating the catecholamine-sensitizing effects of halothane as well as the underlying subcellular mechanisms in human myocardium. Halothane augmented the positive inotropic effect of isoprenaline but not of Ca2+. The increase of the effect of isoprenaline by halothane was more pronounced in failing myocardium, with increased Gi, than in nonfailing donor hearts. Halothane (1%) increased basal as well as isoprenaline-, NaF-, cholera toxin-, and guanylylimidodiphosphate [Gpp(NH)p]-stimulated adenylate cyclase in human myocardial membranes (p < 0.05). Treatment of membranes with pertussis toxin increased adenylate cyclase by 40% and abolished the effect of halothane. Halothane had no effect on forskolin-stimulated adenylate cyclase. The same results, i.e., a pertussis toxin-sensitive increase of adenylate cyclase stimulation by halothane, were obtained in S49 cyc-, wild-type, or recombinant Gs alpha-reconstituted cyc- cell membranes. Carbachol-stimulated guanosine-5'-O-(3-[35S]thio)triphosphate binding was not influenced by halothane, but halothane attenuated the inhibition of adenylate cyclase by Gpp(NH)p in S49 cyc- cells. These data show that halothane stimulates adenylate cyclase and sensitizes adenylate cyclase after stimulation by beta-adrenoceptor agonists and guanine nucleotides due to an impairment of Gi alpha function. This mechanism may play a role in the halothane sensitization of myocardial adenylate cyclase towards catecholamines.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|