Abstract
We report the development of a new assay as an alternative to direct DNA sequencing to measure RNA-edited variation in tissue. The new assay has been validated and is accurate, cheaper, more rapid, and less labor-intensive than DNA sequencing. We also outline the statistical modeling required for analyses of the hierarchical, clustered RNA-editing data generated in these studies. Using the new technique, we analyzed the effects of long-term antipsychotic medication on serotonin-2C receptor (5-HT2CR) RNA editing in rat brain. Our hypothesis that a drug with high affinity for 5-HT2CR, such as clozapine, would alter its RNA-editing profile was not confirmed. Whereas haloperidol, a typical antipsychotic drug that is primarily a dopamine receptor antagonist, reduced 5-HT2C VNV isoform frequency and the level of RNA editing at the D site, risperidone and not the prototype atypical antipsychotic drug clozapine increased the frequency of 5-HT2C VNV and D-site editing. Our data emphasize that caution is required in the interpretation of RNA-editing data in studies of psychiatric disorders, because these studies usually include subjects who received long-term exposure to medication. This newly established method will facilitate high-throughput investigations of RNA editing in disease pathology and in the pharmacological activity of drugs.
- Received April 26, 2005.
- Accepted May 24, 2005.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|