Abstract
In contrast to earlier concepts, it seems that distinct ligands acting on the same receptor may elicit qualitative different response patterns, a phenomenon given many names, including “functional selectivity,” “agonist-directed trafficking,” “biased agonism,” “protean agonism,” or “ligand-directed signaling.” In this issue of Molecular Pharmacology, Sato et al. (p. 1359) extend this concept to β3-adrenergic receptors and report that distinct ligands can activate a single distal response via different signaling pathways. Moreover, they demonstrate that expression density can affect how distinct ligands acting on the same receptor differentially induce cellular responses. We discuss the underlying concepts for such findings and their implications for drug discovery.
Footnotes
-
Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.
-
doi:10.1124/mol.107.040923.
-
Please see the related article on page 1359.
-
ABBREVIATIONS: GPCR, G-protein-coupled receptor; LDS, ligand-directed signaling; ECAR, extracellular acidification rate; CL316243, (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]-propyl]1,3-benzodioxole-2,2-decarboxylate; SR59230A, 3-(2-ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate; MAPK, mitogen-activated protein kinase.
- Received August 15, 2007.
- Accepted August 21, 2007.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|