Abstract
Na+/Ca2+ exchanger (NCX) is a plasma membrane transporter that moves Ca2+ in or out of the cell, depending on membrane potential and transmembrane ion gradients. NCX is the main pathway for Ca2+ extrusion from excitable cells. NCX inhibitors can ameliorate cardiac ischemia-reperfusion injury and promote high-frequency fatigue of skeletal muscle, purportedly by inhibiting the Ca2+ inward mode of NCX. Here we tested two known NCX inhibitors, 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)-isothiourea methanesulfonate (KB-R7943) and the structurally related 2-[[4-[(4-Nitrophenyl)methoxy]phenyl]methyl]-4-thiazoli dinecarboxylic acid ethyl ester (SN-6), for their influence on electrically or caffeine-evoked Ca2+ transients in adult dissociated flexor digitorum brevis (FDB) skeletal muscle fibers and human embryonic kidney (HEK) 293 cells that have stable expression of type 1 ryanodine receptor (RyR1). KB-R7943 (≤10 μM) reversibly attenuates electrically evoked Ca2+ transients in FDB and caffeine-induced Ca2+ release in HEK 293, whereas the structurally related NCX inhibitor SN-6 does not, suggesting that KB-R7943 directly inhibits RyR1. In support of this interpretation, KB-R7943 inhibits high-affinity binding of [3H]ryanodine to RyR1 (IC50 = 5.1 ± 0.9 μM) and the cardiac isoform RyR2 (IC50 = 13.4 ± 1.8 μM). KB-R7943 interfered with the gating of reconstituted RyR1 and RyR2 channels, reducing open probability (Po), shortening mean open time, and prolonging mean closed time. KB-R7943 was more effective at blocking RyR1 with cytoplasmic conditions favoring high Po compared with those favoring low Po. SN-6 has negligible activity toward altering [3H]ryanodine binding of RyR1 and RyR2. Our results identify that KB-R7943 is a reversible, activity-dependent blocker of the two most broadly expressed RyR channel isoforms and contributes to its pharmacological and therapeutic activities.
Footnotes
- Received April 22, 2009.
- Accepted June 9, 2009.
This work was supported by the National Institutes of Health National Institute of Arthritis and Musculoskeletal and Skin Disease [Grants 1R01-AR43140, 1P01-AR52354].
ABBREVIATIONS: NCX, Na+/Ca2+ exchanger; FDB, flexor digitorum brevis; RyR, ryanodine receptor; ECC, excitation-contraction coupling; KB-R7943, 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate; SN-6, 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-4-thiazoli dinecarboxylic acid ethyl ester; HEK, human embryonic kidney; BLM, bilayer lipid membrane; Ry, ryanodine; FDB, flexor digitorum brevis; wt, wild type.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|