Abstract
The expression of P-glycoprotein (P-gp) in tumor cells causes a multidrug resistance (MDR) phenotype. P-gp has been shown to mediate the transport of structurally dissimilar drugs across the cell membrane in an energy-dependent manner. In this report, we show that BIBW22 BS, a phenylpteridine analog, reverses the MDR phenotype of CEM human lymphoma cells in a dose-dependent fashion. Using a photoactive analog of BIBW22 BS {[3H]azido-4-[N-(2-hydroxy-2-methylpropyl)-ethanolamino]-2, 7-bis(cis-2,6-dimethyl-morpholino)-6-phenylpteridine}, we show the photoaffinity labeling of a 170-kDa protein in drug-resistant cells immunoprecipitated with P-gp-specific monoclonal antibodies. The photolabeling of P-gp by [3H]azido-BIBW22 BS was specific and saturable. Furthermore, BIBW22 BS, vinblastine, and verapamil, but not colchicine, inhibited the photolabeling of P-gp by [3H]azido-BIBW22 BS. Drug binding studies showed that membranes from MDR cells bound more BIBW22 BS than parental drug-sensitive cells, and this binding was inhibited with vinblastine and, to a lesser extent, with uridine. However, drug transport studies demonstrated that BIBW22 BS is not a substrate for P-gp efflux pump. Interestingly, BIBW22 BS was shown to accumulate more in resistant cells. Also, BIBW22 BS accumulation in drug-sensitive and -resistant cells was not energy dependent. These results are in contrast with the observed decrease in accumulation or enhanced efflux of [3H]vinblastine seen in the same MDR cells. A comparison of [3H]azido-BIBW22 BS or [3H]azidopine photolabeled P-gp by Cleveland mapping with Staphylococcus aureus V8 protease showed differences in the photolabeled peptides. Taken together, the results of this study show that BIBW22 BS is a potent MDR-reversing agent that binds directly to P-gp but is not effluxed from drug-resistant cells.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|