Abstract
We studied the role of carboxyl tail cysteine residues and their palmitoylation in constitutive signaling by the thyrotropin-releasing hormone (TRH) receptor type 1 (TRH-R1) in transfected mammalian cells and in Xenopus laevis oocytes. To study palmitoylation, we inserted a factor Xa cleavage site within the third extracellular loop of TRH-R1, added a carboxyl-terminal C9 immunotag and expressed the mutant receptor in Chinese hamster ovary cells. We identified TRH-R1-specific palmitoylation in the transmembrane helix-7/carboxyl-tail receptor fragment mainly at Cys-335 and Cys-337. In contrast to a mutant truncated at Cys-335 that was reported previously to be constitutively active, a receptor truncated at Lys-338 (K338Stop), which preserves Cys-335 and Cys-337, and C337Stop and N336Stop, which preserve Cys-335, did not exhibit increased constitutive signaling. TRH-R1 mutants substituted singly by Gly or Ser at Cys-335 or Cys-337 did not exhibit constitutive signaling. By contrast, substitution of both cysteines (C335G/C337G or C335S/C337S) yielded TRH-R1 mutants that exhibited marked constitutive signaling in mammalian cells. In the oocyte, constitutive signaling by C335G/C337G resulted in homologous (of C335G/C337G) and heterologous (of M1 muscarinic receptor) desensitization. Because both Cys-335 and Cys-337 have to be substituted or deleted for constitutive signaling, we propose that a single palmitoylation site in the proximal carboxyl tail is sufficient to constrain TRH-R1 in an inactive conformation.
- Received March 9, 2005.
- Accepted April 15, 2005.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|