Abstract
Celecoxib (CE) is a nonsteroidal anti-inflammatory drug (NSAID) that is a specific inhibitor of cyclooxygenase 2 (COX2). It is indicated for a variety of chronic inflammatory conditions, including rheumatoid arthritis. Over the last few years, adverse cardiovascular effects and increased risk for heart attacks have been associated with this drug. In addition, evidence is emerging for COX2-independent molecular targets. CE has been shown to induce apoptosis in various cancer cells lines through a COX2-independent mechanism that seems to involve inactivation of protein kinase Akt and inhibition of endoplasmic reticulum (ER) Ca2+ ATPase. In this study, we show that both CE and an analog devoid of COX2 inhibitory activity [1-(4-sulfamoyl phenyl)-3-trifluoromethyl-5-(4-trifluoromethylphenyl)pyrazole, CEA] inhibit the secretion of the dimeric interleukin-12 (IL-12) αβ and β2 forms with identical IC50 values of 20 and 30 μM, respectively, whereas no such effect was seen with rofecoxib. Reverse transcription-polymerase chain reaction analysis showed that this inhibition was not due to a blockage of transcription of the α- and β-chain expression cassettes. Secretion of the β monomer form was less strongly inhibited, suggestive for a mechanism primarily targeting dimer assembly in the ER. Analysis of intracellular fractions revealed that both CE and CEA increased the association of IL-12 with calreticulin, an endoplasmic reticulum-resident chaperone involved in the retention of misfolded cargo proteins while blocking interaction with ERp44. Our findings reveal a previously undescribed effect of celecoxib on oligomer protein folding and assembly in the endoplasmic reticulum and ensuing secretion and suggest that celecoxib-driven alteration of the secretome may be involved in some of its clinical side effects.
- Received November 8, 2005.
- Accepted February 7, 2006.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|