Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a key physiological regulator of insulin secretion and a major therapeutic target for the treatment of type II diabetes. However, regulation of GLP-1R function is complex with multiple endogenous peptides that interact with the receptor, including full-length (1–37) and truncated (7–37) forms of GLP-1 that can exist in an amidated form (GLP-1(1–36)NH2 and GLP-1(7–36)NH2) and the related peptide oxyntomodulin. In addition, the GLP-1R possesses exogenous agonists, including exendin-4, and the allosteric modulator, compound 2 (6,7-dichloro-2-methylsulfonyl-3-tert-butylaminoquinoxaline). The complexity of this ligand-receptor system is further increased by the presence of several single nucleotide polymorphisms (SNPs) that are distributed across the receptor. We have investigated 10 GLP-1R SNPs, which were characterized in three physiologically relevant signaling pathways (cAMP accumulation, extracellular signal-regulated kinase 1/2 phosphorylation, and intracellular Ca2+ mobilization); ligand binding and cell surface receptor expression were also determined. We demonstrate both ligand- and pathway-specific effects for multiple SNPs, with the most dramatic effect observed for the Met149 receptor variant. At the Met149 variant, there was selective loss of peptide-induced responses across all pathways examined, but preservation of response to the small molecule compound 2. In contrast, at the Cys333 variant, peptide responses were preserved but there was attenuated response to compound 2. Strikingly, the loss of peptide function at the Met149 receptor variant could be allosterically rescued by compound 2, providing proof-of-principle evidence that allosteric drugs could be used to treat patients with this loss of function variant.
Footnotes
↵ The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.
This work was funded in part by the National Health and Medical Research Council (NHMRC) of Australia [Grants 519461, 1002180]; and by an NHMRC Australian Principal Research Fellowship (to P.M.S.) and a Senior Research Fellowship (to A.C.).
Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.
doi:10.1124/mol.111.072884.
-
ABBREVIATIONS:
- GLP-1R
- glucagon-like peptide-1 receptor
- SNP
- single nucleotide polymorphism
- DMEM
- Dulbecco's modified Eagle's medium
- ERK
- extracellular signal-regulated kinase
- FBS
- Fetal bovine serum
- CHO
- Chinese hamster ovary
- BSA
- bovine serum albumin
- compound 2
- 6,7-dichloro-2-methylsulfonyl-3-tert-butylaminoquinoxaline.
- Received April 11, 2011.
- Accepted May 26, 2011.
- Copyright © 2011 The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|