Abstract
Since approval of rituximab for treatment of B cell non-Hodgkin lymphoma, development of monoclonal antibodies (mAbs) for cancer treatment and elucidation of their cytotoxic mechanisms have been subject to intense investigations. Compelling evidence indicates that rituximab and another CD20 mAb, ofatumumab, must use the body’s cellular and humoral immune effector functions to kill malignant cells. Other U.S. Food and Drug Administration–approved mAbs, including obinutuzumab, cetuximab, and trastuzumab, require, in part, these effector mechanisms to eliminate tumor cells. Although gram quantities of mAbs can be administered to patients, our investigations of CD20 mAb-based therapies for chronic lymphocytic leukemia (CLL), including correlative measurements in clinical trials and studies with primary cells and cell lines, indicate that effector mechanisms necessary for mAb activity can be saturated or exhausted if tumor burdens are high, thus substantially compromising the efficacy of high-dose mAb therapy. Under these conditions, another reaction (trogocytosis) predominates in which bound CD20 mAb and CD20 are removed from targeted cells by effector cells that express Fcγ receptors, thereby allowing malignant cells to escape unharmed and continue to promote disease pathology. To address this problem, we propose that a low-dose strategy, based on administering 30–50 mg of CD20 mAb three times per week, may be far more effective for CLL than standard dosing because it will minimize effector function saturation and reduce trogocytosis. This approach may have general applicability to other mAbs that use immune effector functions, and could be formulated into a subcutaneous treatment strategy that would be more accessible and possibly more efficacious for patients.
Footnotes
- Received March 12, 2014.
- Accepted June 18, 2014.
The research was supported by the Commonwealth Foundation for Cancer Research, the National Institutes of Health National Cancer Institute [Grant P30-CA044579], Genmab, and GlaxoSmithKline.
- Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|