Abstract
Metabotropic glutamate receptors (mGluRs) function as dimers. Recent work suggests that mGluR1 and mGluR5 may physically interact, but the nature and functional consequences of this relationship have not been addressed. In this study, the functional and pharmacological consequences of this interaction were investigated. Using heterologous expression of mGluR cDNA in rat sympathetic neurons from the superior cervical ganglion and inhibition of the native calcium currents as an assay for receptor activation, a functional interdependence between mGluR1 and mGluR5 was demonstrated. In neurons coexpressing these receptors, combining a selective mGluR1 competitive antagonist with either an mGluR1- or mGluR5-selective negative allosteric modulator (NAM) BAY36-7620 [(3aS,6aS)-hexahydro-5-methylene-6a-(2-naphthalenylmethyl)-1H-cyclopenta[c]furan-1-one] or MPEP [2-methyl-6-(phenylethynyl)pyridine hydrochloride], respectively, strongly occluded signaling by both receptors to an approximately equal degree. By contrast, in cells coexpressing mGluR1 and mGluR2, combining the same mGluR1 competitive inhibitor with an mGluR1 or mGluR2 NAM yielded partial and full inhibition of the response, respectively, as expected for independently acting receptors. In neurons expressing mGluR1 and mGluR5, the selective NAMs each strongly inhibited the response to glutamate, suggesting that these receptors do not interact as heterodimers, which would not be inhibited by selective NAMs. Finally, evidence for a similar mGluR1/mGluR5 functional dependence is shown in medium spiny striatal neurons. Together, these data demonstrate cooperative signaling between mGluR1 and mGluR5 in a manner inconsistent with heterodimerization, and thus suggest an interaction between homodimers.
Footnotes
- Received April 24, 2014.
- Accepted August 11, 2014.
This research was supported by the National Institutes of Health National Institute of General Medical Sciences [Grant R01-GM101023].
↵This article has supplemental material available at molpharm.aspetjournals.org.
- Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|